import torch import torch.nn as nn import torch.optim as optim import torch.autograd as autograd import random import math class CNN(nn.Module): def __init__(self, input_dim, output_dim): super(CNN, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.features = nn.Sequential( nn.Conv2d(input_dim[0], 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU() ) self.fc = nn.Sequential( nn.Linear(self.feature_size(), 512), nn.ReLU(), nn.Linear(512, self.output_dim) ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def feature_size(self): return self.features(autograd.Variable(torch.zeros(1, *self.input_dim))).view(1, -1).size(1) def act(self, state, epsilon): if random.random() > epsilon: state = Variable(torch.FloatTensor(np.float32(state)).unsqueeze(0), volatile=True) q_value = self.forward(state) action = q_value.max(1)[1].data[0] else: action = random.randrange(env.action_space.n) return action class ReplayBuffer: def __init__(self, capacity): self.capacity = capacity # 经验回放的容量 self.buffer = [] # 缓冲区 self.position = 0 def push(self, state, action, reward, next_state, done): ''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition) ''' if len(self.buffer) < self.capacity: self.buffer.append(None) self.buffer[self.position] = (state, action, reward, next_state, done) self.position = (self.position + 1) % self.capacity def sample(self, batch_size): batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移 state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等 return state, action, reward, next_state, done def __len__(self): ''' 返回当前存储的量 ''' return len(self.buffer) class DQN: def __init__(self, n_states, n_actions, cfg): self.n_actions = n_actions # 总的动作个数 self.device = cfg.device # 设备,cpu或gpu等 self.gamma = cfg.gamma # 奖励的折扣因子 # e-greedy策略相关参数 self.frame_idx = 0 # 用于epsilon的衰减计数 self.epsilon = lambda frame_idx: cfg.epsilon_end + \ (cfg.epsilon_start - cfg.epsilon_end) * \ math.exp(-1. * frame_idx / cfg.epsilon_decay) self.batch_size = cfg.batch_size self.policy_net = CNN(n_states, n_actions).to(self.device) self.target_net = CNN(n_states, n_actions).to(self.device) for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net target_param.data.copy_(param.data) self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器 self.memory = ReplayBuffer(cfg.memory_capacity) # 经验回放 def choose_action(self, state): ''' 选择动作 ''' self.frame_idx += 1 if random.random() > self.epsilon(self.frame_idx): with torch.no_grad(): print(type(state)) state = torch.tensor([state], device=self.device, dtype=torch.float32) q_values = self.policy_net(state) action = q_values.max(1)[1].item() # 选择Q值最大的动作 else: action = random.randrange(self.n_actions) return action def update(self): if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略 return # 从经验回放中(replay memory)中随机采样一个批量的转移(transition) state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample( self.batch_size) # 转为张量 state_batch = torch.tensor(state_batch, device=self.device, dtype=torch.float) action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1) reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float) next_state_batch = torch.tensor(next_state_batch, device=self.device, dtype=torch.float) done_batch = torch.tensor(np.float32(done_batch), device=self.device) q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch) # 计算当前状态(s_t,a)对应的Q(s_t, a) next_q_values = self.target_net(next_state_batch).max(1)[0].detach() # 计算下一时刻的状态(s_t_,a)对应的Q值 # 计算期望的Q值,对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward expected_q_values = reward_batch + self.gamma * next_q_values * (1-done_batch) loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算均方根损失 # 优化更新模型 self.optimizer.zero_grad() loss.backward() for param in self.policy_net.parameters(): # clip防止梯度爆炸 param.grad.data.clamp_(-1, 1) self.optimizer.step() def save(self, path): torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth') def load(self, path): self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth')) for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()): param.data.copy_(target_param.data)