96 lines
3.5 KiB
Markdown
96 lines
3.5 KiB
Markdown
# 使用Policy-Based方法实现Pendulum-v0
|
||
|
||
使用Policy-Based方法比如DDPG等实现Pendulum-v0环境
|
||
|
||
## Pendulum-v0
|
||
|
||

|
||
|
||
钟摆以随机位置开始,目标是将其摆动,使其保持向上直立。动作空间是连续的,值的区间为[-2,2]。每个step给的reward最低为-16.27,最高为0。
|
||
|
||
环境建立如下:
|
||
|
||
```python
|
||
env = gym.make('Pendulum-v0')
|
||
env.seed(1) # 设置env随机种子
|
||
n_states = env.observation_space.shape[0] # 获取总的状态数
|
||
```
|
||
|
||
## 强化学习基本接口
|
||
|
||
```python
|
||
rewards = [] # 记录总的rewards
|
||
moving_average_rewards = [] # 记录总的经滑动平均处理后的rewards
|
||
ep_steps = []
|
||
for i_episode in range(1, cfg.max_episodes+1): # cfg.max_episodes为最大训练的episode数
|
||
state = env.reset() # reset环境状态
|
||
ep_reward = 0
|
||
for i_step in range(1, cfg.max_steps+1): # cfg.max_steps为每个episode的补偿
|
||
action = agent.select_action(state) # 根据当前环境state选择action
|
||
next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||
ep_reward += reward
|
||
agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory
|
||
state = next_state # 跳转到下一个状态
|
||
agent.update() # 每步更新网络
|
||
if done:
|
||
break
|
||
# 更新target network,复制DQN中的所有weights and biases
|
||
if i_episode % cfg.target_update == 0: # cfg.target_update为target_net的更新频率
|
||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||
print('Episode:', i_episode, ' Reward: %i' %
|
||
int(ep_reward), 'n_steps:', i_step, 'done: ', done,' Explore: %.2f' % agent.epsilon)
|
||
ep_steps.append(i_step)
|
||
rewards.append(ep_reward)
|
||
# 计算滑动窗口的reward
|
||
if i_episode == 1:
|
||
moving_average_rewards.append(ep_reward)
|
||
else:
|
||
moving_average_rewards.append(
|
||
0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||
```
|
||
|
||
## 任务要求
|
||
|
||
训练并绘制reward以及滑动平均后的reward随episode的变化曲线图并记录超参数写成报告,图示如下:
|
||
|
||

|
||
|
||

|
||
|
||

|
||
|
||
同时也可以绘制测试(eval)模型时的曲线:
|
||
|
||

|
||
|
||

|
||
|
||

|
||
|
||
也可以[tensorboard](https://pytorch.org/docs/stable/tensorboard.html)查看结果,如下:
|
||
|
||

|
||
|
||
### 注意
|
||
|
||
1. 本次环境action范围在[-2,2]之间,而神经网络中输出的激活函数tanh在[0,1],可以使用NormalizedActions(gym.ActionWrapper)的方法解决
|
||
2. 由于本次环境为惯性系统,建议增加Ornstein-Uhlenbeck噪声提高探索率,可参考[知乎文章](https://zhuanlan.zhihu.com/p/96720878)
|
||
3. 推荐多次试验保存rewards,然后使用searborn绘制,可参考[CSDN](https://blog.csdn.net/JohnJim0/article/details/106715402)
|
||
|
||
### 代码清单
|
||
|
||
**main.py**:保存强化学习基本接口,以及相应的超参数,可使用argparse
|
||
|
||
**model.py**:保存神经网络,比如全链接网络
|
||
|
||
**ddpg.py**: 保存算法模型,主要包含select_action和update两个函数
|
||
|
||
**memory.py**:保存Replay Buffer
|
||
|
||
**plot.py**:保存相关绘制函数
|
||
|
||
**noise.py**:保存噪声相关
|
||
|
||
[参考代码](https://github.com/datawhalechina/easy-rl/tree/master/codes/DDPG)
|
||
|