56 lines
4.5 KiB
Markdown
56 lines
4.5 KiB
Markdown
|
||
[Eng](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README_en.md)|[中文](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README.md)
|
||
|
||
## 写在前面
|
||
|
||
本项目用于学习RL基础算法,尽量做到: **注释详细**,**结构清晰**。
|
||
|
||
代码结构主要分为以下几个脚本:
|
||
|
||
* ```model.py``` 强化学习算法的基本模型,比如神经网络,actor,critic等
|
||
* ```memory.py``` 保存Replay Buffer,用于off-policy
|
||
* ```plot.py``` 利用matplotlib或seaborn绘制rewards图,包括滑动平均的reward,结果保存在result文件夹中
|
||
* ```env.py``` 用于构建强化学习环境,也可以重新自定义环境,比如给action加noise
|
||
* ```agent.py``` RL核心算法,比如dqn等,主要包含update和choose_action两个方法,
|
||
* ```main.py``` 运行主函数
|
||
|
||
其中```model.py```,```memory.py```,```plot.py``` 由于不同算法都会用到,所以放入```common```文件夹中。
|
||
|
||
## 运行环境
|
||
|
||
python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.18.0
|
||
|
||
## 使用说明
|
||
|
||
运行```main.py```或者```main.ipynb```,或者包含```task```名的文件(比如```task1.py```)
|
||
## 算法进度
|
||
|
||
| 算法名称 | 相关论文材料 | 环境 | 备注 |
|
||
| :--------------------------------------: | :----------------------------------------------------------: | ------------------------------------- | :--------------------------------: |
|
||
| [On-Policy First-Visit MC](./MonteCarlo) | | [Racetrack](./envs/racetrack_env.md) | |
|
||
| [Q-Learning](./QLearning) | | [CliffWalking-v0](./envs/gym_info.md) | |
|
||
| [Sarsa](./Sarsa) | | [Racetrack](./envs/racetrack_env.md) | |
|
||
| [DQN](./DQN) | [DQN Paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf),[Nature DQN Paper](https://www.nature.com/articles/nature14236) | [CartPole-v0](./envs/gym_info.md) | |
|
||
| [DQN-cnn](./DQN_cnn) | [DQN Paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | 与DQN相比使用了CNN而不是全链接网络 |
|
||
| [DoubleDQN](./DoubleDQN) | | [CartPole-v0](./envs/gym_info.md) | |
|
||
| [Hierarchical DQN](HierarchicalDQN) | [H-DQN Paper](https://arxiv.org/abs/1604.06057) | [CartPole-v0](./envs/gym_info.md) | |
|
||
| [PolicyGradient](./PolicyGradient) | | [CartPole-v0](./envs/gym_info.md) | |
|
||
| A2C | [A3C Paper](https://arxiv.org/abs/1602.01783) | [CartPole-v0](./envs/gym_info.md) | |
|
||
| A3C | [A3C Paper](https://arxiv.org/abs/1602.01783) | | |
|
||
| SAC | [SAC Paper](https://arxiv.org/abs/1801.01290) | | |
|
||
| [PPO](./PPO) | [PPO paper](https://arxiv.org/abs/1707.06347) | [CartPole-v0](./envs/gym_info.md) | |
|
||
| [DDPG](./DDPG) | [DDPG Paper](https://arxiv.org/abs/1509.02971) | [Pendulum-v0](./envs/gym_info.md) | |
|
||
| [TD3](./TD3) | [TD3 Paper](https://arxiv.org/abs/1802.09477) | HalfCheetah-v2 | |
|
||
| GAIL | [GAIL Paper](https://arxiv.org/abs/1606.03476) | | |
|
||
|
||
|
||
|
||
|
||
## Refs
|
||
|
||
|
||
[RL-Adventure-2](https://github.com/higgsfield/RL-Adventure-2)
|
||
|
||
[RL-Adventure](https://github.com/higgsfield/RL-Adventure)
|
||
|