Files
easy-rl/codes/DQN/task0_train.py
johnjim0816 34fcebc4b8 update
2021-09-16 15:35:40 +08:00

128 lines
4.7 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:48:57
@LastEditor: John
LastEditTime: 2021-09-15 15:34:13
@Discription:
@Environment: python 3.7.7
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加父路径到系统路径sys.path
import gym
import torch
import datetime
from common.utils import save_results, make_dir
from common.plot import plot_rewards,plot_rewards_cn
from DQN.agent import DQN
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
class DQNConfig:
def __init__(self):
self.algo = "DQN" # 算法名称
self.env = 'CartPole-v0' # 环境名称
self.result_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/results/' # 保存结果的路径
self.model_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/models/' # 保存模型的路径
self.train_eps = 200 # 训练的回合数
self.eval_eps = 30 # 测试的回合数
self.gamma = 0.95 # 强化学习中的折扣因子
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
self.lr = 0.0001 # 学习率
self.memory_capacity = 100000 # 经验回放的容量
self.batch_size = 64 # mini-batch SGD中的批量大小
self.target_update = 4 # 目标网络的更新频率
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.hidden_dim = 256 # hidden size of net
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env)
env.seed(seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
agent = DQN(n_states,n_actions,cfg)
return env,agent
def train(cfg, env, agent):
print('开始训练!')
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
rewards = [] # 记录奖励
ma_rewards = [] # 记录滑动平均奖励
for i_ep in range(cfg.train_eps):
state = env.reset()
done = False
ep_reward = 0
while True:
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done)
state = next_state
agent.update()
if done:
break
if (i_ep+1) % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
if (i_ep+1)%10 == 0:
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
rewards.append(ep_reward)
# save ma_rewards
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('完成训练!')
return rewards, ma_rewards
def eval(cfg,env,agent):
print('开始测试!')
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
rewards = []
ma_rewards = [] # moving average rewards
for i_ep in range(cfg.eval_eps):
ep_reward = 0 # reward per episode
state = env.reset()
while True:
action = agent.predict(state)
next_state, reward, done, _ = env.step(action)
state = next_state
ep_reward += reward
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
print(f"回合:{i_ep+1}/{cfg.eval_eps}, 奖励:{ep_reward:.1f}")
print('完成测试!')
return rewards,ma_rewards
if __name__ == "__main__":
cfg = DQNConfig()
# 训练
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
plot_rewards_cn(rewards, ma_rewards, tag="train",
algo=cfg.algo, path=cfg.result_path)
# 测试
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards_cn(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)