92 lines
3.4 KiB
Python
92 lines
3.4 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
@Author: John
|
||
@Email: johnjim0816@gmail.com
|
||
@Date: 2020-06-11 20:58:21
|
||
@LastEditor: John
|
||
LastEditTime: 2021-03-19 19:57:00
|
||
@Discription:
|
||
@Environment: python 3.7.7
|
||
'''
|
||
import sys,os
|
||
sys.path.append(os.getcwd()) # 添加当前终端路径
|
||
import torch
|
||
import gym
|
||
import numpy as np
|
||
import datetime
|
||
from DDPG.agent import DDPG
|
||
from DDPG.env import NormalizedActions,OUNoise
|
||
from common.plot import plot_rewards
|
||
from common.utils import save_results
|
||
|
||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
|
||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
|
||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||
os.mkdir(SAVED_MODEL_PATH)
|
||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
|
||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
|
||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||
os.mkdir(RESULT_PATH)
|
||
|
||
class DDPGConfig:
|
||
def __init__(self):
|
||
self.gamma = 0.99
|
||
self.critic_lr = 1e-3
|
||
self.actor_lr = 1e-4
|
||
self.memory_capacity = 10000
|
||
self.batch_size = 128
|
||
self.train_eps =300
|
||
self.train_steps = 200
|
||
self.eval_eps = 200
|
||
self.eval_steps = 200
|
||
self.target_update = 4
|
||
self.hidden_dim = 30
|
||
self.soft_tau=1e-2
|
||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
def train(cfg,env,agent):
|
||
print('Start to train ! ')
|
||
ou_noise = OUNoise(env.action_space) # action noise
|
||
rewards = []
|
||
ma_rewards = [] # moving average rewards
|
||
ep_steps = []
|
||
for i_episode in range(cfg.train_eps):
|
||
state = env.reset()
|
||
ou_noise.reset()
|
||
ep_reward = 0
|
||
for i_step in range(cfg.train_steps):
|
||
action = agent.choose_action(state)
|
||
action = ou_noise.get_action(
|
||
action, i_step) # 即paper中的random process
|
||
next_state, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
agent.memory.push(state, action, reward, next_state, done)
|
||
agent.update()
|
||
state = next_state
|
||
if done:
|
||
break
|
||
print('Episode:{}/{}, Reward:{}, Steps:{}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,i_step+1,done))
|
||
ep_steps.append(i_step)
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print('Complete training!')
|
||
return rewards,ma_rewards
|
||
|
||
if __name__ == "__main__":
|
||
cfg = DDPGConfig()
|
||
env = NormalizedActions(gym.make("Pendulum-v0"))
|
||
env.seed(1) # 设置env随机种子
|
||
n_states = env.observation_space.shape[0]
|
||
n_actions = env.action_space.shape[0]
|
||
agent = DDPG(n_states,n_actions,cfg)
|
||
rewards,ma_rewards = train(cfg,env,agent)
|
||
agent.save(path=SAVED_MODEL_PATH)
|
||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
|
||
|