107 lines
3.4 KiB
Python
107 lines
3.4 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: John
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2021-03-12 21:14:12
|
||
LastEditor: John
|
||
LastEditTime: 2021-03-20 16:44:00
|
||
Discription:
|
||
Environment:
|
||
'''
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
from torch.distributions import Categorical
|
||
class MLP1(nn.Module):
|
||
''' 多层感知机
|
||
输入:state维度
|
||
输出:概率
|
||
'''
|
||
def __init__(self,n_states,hidden_dim = 36):
|
||
super(MLP1, self).__init__()
|
||
# 24和36为hidden layer的层数,可根据state_dim, n_actions的情况来改变
|
||
self.fc1 = nn.Linear(n_states, hidden_dim)
|
||
self.fc2 = nn.Linear(hidden_dim,hidden_dim)
|
||
self.fc3 = nn.Linear(hidden_dim, 1) # Prob of Left
|
||
|
||
def forward(self, x):
|
||
x = F.relu(self.fc1(x))
|
||
x = F.relu(self.fc2(x))
|
||
x = F.sigmoid(self.fc3(x))
|
||
return x
|
||
|
||
|
||
class MLP2(nn.Module):
|
||
def __init__(self, n_states,n_actions,hidden_dim=128):
|
||
""" 初始化q网络,为全连接网络
|
||
n_states: 输入的feature即环境的state数目
|
||
n_actions: 输出的action总个数
|
||
"""
|
||
super(MLP2, self).__init__()
|
||
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
|
||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
|
||
|
||
def forward(self, x):
|
||
# 各层对应的激活函数
|
||
x = F.relu(self.fc1(x))
|
||
x = F.relu(self.fc2(x))
|
||
return self.fc3(x)
|
||
|
||
class Critic(nn.Module):
|
||
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
|
||
super(Critic, self).__init__()
|
||
|
||
self.linear1 = nn.Linear(n_obs + n_actions, hidden_size)
|
||
self.linear2 = nn.Linear(hidden_size, hidden_size)
|
||
self.linear3 = nn.Linear(hidden_size, 1)
|
||
# 随机初始化为较小的值
|
||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||
|
||
def forward(self, state, action):
|
||
# 按维数1拼接
|
||
x = torch.cat([state, action], 1)
|
||
x = F.relu(self.linear1(x))
|
||
x = F.relu(self.linear2(x))
|
||
x = self.linear3(x)
|
||
return x
|
||
|
||
class Actor(nn.Module):
|
||
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
|
||
super(Actor, self).__init__()
|
||
self.linear1 = nn.Linear(n_obs, hidden_size)
|
||
self.linear2 = nn.Linear(hidden_size, hidden_size)
|
||
self.linear3 = nn.Linear(hidden_size, n_actions)
|
||
|
||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||
|
||
def forward(self, x):
|
||
x = F.relu(self.linear1(x))
|
||
x = F.relu(self.linear2(x))
|
||
x = F.tanh(self.linear3(x))
|
||
return x
|
||
|
||
class ActorCritic(nn.Module):
|
||
def __init__(self, n_states, n_actions, hidden_dim=256):
|
||
super(ActorCritic, self).__init__()
|
||
self.critic = nn.Sequential(
|
||
nn.Linear(n_states, hidden_dim),
|
||
nn.ReLU(),
|
||
nn.Linear(hidden_dim, 1)
|
||
)
|
||
|
||
self.actor = nn.Sequential(
|
||
nn.Linear(n_states, hidden_dim),
|
||
nn.ReLU(),
|
||
nn.Linear(hidden_dim, n_actions),
|
||
nn.Softmax(dim=1),
|
||
)
|
||
|
||
def forward(self, x):
|
||
value = self.critic(x)
|
||
probs = self.actor(x)
|
||
dist = Categorical(probs)
|
||
return dist, value |