90 lines
3.4 KiB
Python
90 lines
3.4 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: John
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2020-11-22 23:21:53
|
||
LastEditor: John
|
||
LastEditTime: 2021-03-13 11:50:32
|
||
Discription:
|
||
Environment:
|
||
'''
|
||
import sys,os
|
||
sys.path.append(os.getcwd()) # 添加当前终端路径
|
||
from itertools import count
|
||
import datetime
|
||
import gym
|
||
from PolicyGradient.agent import PolicyGradient
|
||
from common.plot import plot_rewards
|
||
from common.utils import save_results
|
||
|
||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
|
||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
|
||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||
os.mkdir(SAVED_MODEL_PATH)
|
||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
|
||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
|
||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||
os.mkdir(RESULT_PATH)
|
||
|
||
class PGConfig:
|
||
def __init__(self):
|
||
self.train_eps = 300 # 训练的episode数目
|
||
self.batch_size = 8
|
||
self.lr = 0.01 # 学习率
|
||
self.gamma = 0.99
|
||
self.hidden_dim = 36 # 隐藏层维度
|
||
|
||
def train(cfg,env,agent):
|
||
'''下面带pool都是存放的transition序列用于gradient'''
|
||
state_pool = [] # 存放每batch_size个episode的state序列
|
||
action_pool = []
|
||
reward_pool = []
|
||
''' 存储每个episode的reward用于绘图'''
|
||
rewards = []
|
||
ma_rewards = []
|
||
for i_episode in range(cfg.train_eps):
|
||
state = env.reset()
|
||
ep_reward = 0
|
||
for _ in count():
|
||
action = agent.choose_action(state) # 根据当前环境state选择action
|
||
next_state, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
if done:
|
||
reward = 0
|
||
state_pool.append(state)
|
||
action_pool.append(float(action))
|
||
reward_pool.append(reward)
|
||
state = next_state
|
||
if done:
|
||
print('Episode:', i_episode, ' Reward:', ep_reward)
|
||
break
|
||
if i_episode > 0 and i_episode % cfg.batch_size == 0:
|
||
agent.update(reward_pool,state_pool,action_pool)
|
||
state_pool = [] # 每个episode的state
|
||
action_pool = []
|
||
reward_pool = []
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(
|
||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print('complete training!')
|
||
return rewards, ma_rewards
|
||
|
||
if __name__ == "__main__":
|
||
cfg = PGConfig()
|
||
env = gym.make('CartPole-v0') # 可google为什么unwrapped gym,此处一般不需要
|
||
env.seed(1) # 设置env随机种子
|
||
n_states = env.observation_space.shape[0]
|
||
n_actions = env.action_space.n
|
||
agent = PolicyGradient(n_states,cfg)
|
||
rewards, ma_rewards = train(cfg,env,agent)
|
||
agent.save_model(SAVED_MODEL_PATH)
|
||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||
plot_rewards(rewards,ma_rewards,tag="train",algo = "Policy Gradient",path=RESULT_PATH)
|