#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-11-22 23:21:53 LastEditor: John LastEditTime: 2021-03-13 11:50:32 Discription: Environment: ''' import sys,os sys.path.append(os.getcwd()) # 添加当前终端路径 from itertools import count import datetime import gym from PolicyGradient.agent import PolicyGradient from common.plot import plot_rewards from common.utils import save_results SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径 if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹 os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/") if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹 os.mkdir(SAVED_MODEL_PATH) RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径 if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹 os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/") if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹 os.mkdir(RESULT_PATH) class PGConfig: def __init__(self): self.train_eps = 300 # 训练的episode数目 self.batch_size = 8 self.lr = 0.01 # 学习率 self.gamma = 0.99 self.hidden_dim = 36 # 隐藏层维度 def train(cfg,env,agent): '''下面带pool都是存放的transition序列用于gradient''' state_pool = [] # 存放每batch_size个episode的state序列 action_pool = [] reward_pool = [] ''' 存储每个episode的reward用于绘图''' rewards = [] ma_rewards = [] for i_episode in range(cfg.train_eps): state = env.reset() ep_reward = 0 for _ in count(): action = agent.choose_action(state) # 根据当前环境state选择action next_state, reward, done, _ = env.step(action) ep_reward += reward if done: reward = 0 state_pool.append(state) action_pool.append(float(action)) reward_pool.append(reward) state = next_state if done: print('Episode:', i_episode, ' Reward:', ep_reward) break if i_episode > 0 and i_episode % cfg.batch_size == 0: agent.update(reward_pool,state_pool,action_pool) state_pool = [] # 每个episode的state action_pool = [] reward_pool = [] rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('complete training!') return rewards, ma_rewards if __name__ == "__main__": cfg = PGConfig() env = gym.make('CartPole-v0') # 可google为什么unwrapped gym,此处一般不需要 env.seed(1) # 设置env随机种子 n_states = env.observation_space.shape[0] n_actions = env.action_space.n agent = PolicyGradient(n_states,cfg) rewards, ma_rewards = train(cfg,env,agent) agent.save_model(SAVED_MODEL_PATH) save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH) plot_rewards(rewards,ma_rewards,tag="train",algo = "Policy Gradient",path=RESULT_PATH)