58 lines
4.7 KiB
Markdown
58 lines
4.7 KiB
Markdown
|
||
|
||
[Eng](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README_en.md)|[中文](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README.md)
|
||
|
||
## Introduction
|
||
|
||
This repo is used to learn basic RL algorithms, we will make it **detailed comment** and **clear structure** as much as possible:
|
||
|
||
The code structure mainly contains several scripts as following:
|
||
|
||
* ```model.py``` basic network model of RL, like MLP, CNN
|
||
* ```memory.py``` Replay Buffer
|
||
* ```plot.py``` use seaborn to plot rewards curve,saved in folder ``` result```.
|
||
* ```env.py``` to custom or normalize environments
|
||
* ```agent.py``` core algorithms, include a python Class with functions(choose action, update)
|
||
* ```main.py``` main function
|
||
|
||
|
||
|
||
Note that ```model.py```,```memory.py```,```plot.py``` shall be utilized in different algorithms,thus they are put into ```common``` folder。
|
||
|
||
## Runnig Environment
|
||
|
||
python 3.7.9、pytorch 1.6.0、gym 0.18.0
|
||
## Usage
|
||
|
||
run ```main.py``` or ```main.ipynb```
|
||
|
||
## Schedule
|
||
|
||
| Name | Related materials | Used Envs | Notes |
|
||
| :----------------------------------------------------------: | :---------------------------------------------------------: | ------------------------------------------------------------ | :----------------------------------------------------------: |
|
||
| [On-Policy First-Visit MC](./MonteCarlo) | | [Racetrack](./envs/racetrack_env.md) | |
|
||
| [Q-Learning](./QLearning) | | [CliffWalking-v0](./envs/gym_info.md) | |
|
||
| [Sarsa](./Sarsa) | | [Racetrack](./envs/racetrack_env.md) | |
|
||
| [DQN](./DQN) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
|
||
| [DQN-cnn](./DQN_cnn) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
|
||
| [DoubleDQN](./DoubleDQN) | | [CartPole-v0](./envs/gym_info.md) | not well |
|
||
| Hierarchical DQN | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | | |
|
||
| [PolicyGradient](./PolicyGradient) | | [CartPole-v0](./envs/gym_info.md) | |
|
||
| A2C | | [CartPole-v0](./envs/gym_info.md) | |
|
||
| A3C | | | |
|
||
| SAC | | | |
|
||
| [PPO](./PPO) | [PPO paper](https://arxiv.org/abs/1707.06347) | [CartPole-v0](./envs/gym_info.md) | |
|
||
| DDPG | [DDPG Paper](https://arxiv.org/abs/1509.02971) | [Pendulum-v0](./envs/gym_info.md) | |
|
||
| TD3 | [Twin Dueling DDPG Paper](https://arxiv.org/abs/1802.09477) | | |
|
||
| GAIL | | | |
|
||
|
||
|
||
## Refs
|
||
|
||
|
||
[RL-Adventure-2](https://github.com/higgsfield/RL-Adventure-2)
|
||
|
||
[RL-Adventure](https://github.com/higgsfield/RL-Adventure)
|
||
|
||
https://www.cnblogs.com/lucifer1997/p/13458563.html
|