Files
easy-rl/codes/PolicyGradient/main.py
2020-11-27 18:34:11 +08:00

110 lines
4.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:21:53
LastEditor: John
LastEditTime: 2020-11-24 19:52:40
Discription:
Environment:
'''
from itertools import count
import torch
import os
from torch.utils.tensorboard import SummaryWriter
from env import env_init
from params import get_args
from agent import PolicyGradient
from params import SEQUENCE, SAVED_MODEL_PATH, RESULT_PATH
from utils import save_results,save_model
from plot import plot
def train(cfg):
env,state_dim,n_actions = env_init()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
agent = PolicyGradient(state_dim,device = device,lr = cfg.policy_lr)
'''下面带pool都是存放的transition序列用于gradient'''
state_pool = [] # 存放每batch_size个episode的state序列
action_pool = []
reward_pool = []
''' 存储每个episode的reward用于绘图'''
rewards = []
moving_average_rewards = []
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/train/" + SEQUENCE
writer = SummaryWriter(log_dir) # 使用tensorboard的writer
for i_episode in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
for _ in count():
action = agent.choose_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action)
ep_reward += reward
if done:
reward = 0
state_pool.append(state)
action_pool.append(float(action))
reward_pool.append(reward)
state = next_state
if done:
print('Episode:', i_episode, ' Reward:', ep_reward)
break
if i_episode > 0 and i_episode % cfg.batch_size == 0:
agent.update(reward_pool,state_pool,action_pool)
state_pool = [] # 每个episode的state
action_pool = []
reward_pool = []
rewards.append(ep_reward)
if i_episode == 0:
moving_average_rewards.append(ep_reward)
else:
moving_average_rewards.append(
0.9*moving_average_rewards[-1]+0.1*ep_reward)
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode+1)
writer.close()
print('Complete training')
save_model(agent,model_path=SAVED_MODEL_PATH)
'''存储reward等相关结果'''
save_results(rewards,moving_average_rewards,tag='train',result_path=RESULT_PATH)
plot(rewards)
plot(moving_average_rewards,ylabel='moving_average_rewards_train')
def eval(cfg,saved_model_path = SAVED_MODEL_PATH):
env,state_dim,n_actions = env_init()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
agent = PolicyGradient(state_dim,device = device,lr = cfg.policy_lr)
agent.load_model(saved_model_path+'checkpoint.pth')
rewards = []
moving_average_rewards = []
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/eval/" + SEQUENCE
writer = SummaryWriter(log_dir) # 使用tensorboard的writer
for i_episode in range(cfg.eval_eps):
state = env.reset()
ep_reward = 0
for _ in count():
action = agent.choose_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action)
ep_reward += reward
state = next_state
if done:
print('Episode:', i_episode, ' Reward:', ep_reward)
break
rewards.append(ep_reward)
if i_episode == 0:
moving_average_rewards.append(ep_reward)
else:
moving_average_rewards.append(
0.9*moving_average_rewards[-1]+0.1*ep_reward)
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode+1)
writer.close()
print('Complete evaling')
if __name__ == "__main__":
cfg = get_args()
if cfg.train:
train(cfg)
eval(cfg)
else:
model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"
eval(cfg,saved_model_path=model_path)