141 lines
4.2 KiB
Python
141 lines
4.2 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: John
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2021-03-12 16:02:24
|
||
LastEditor: John
|
||
LastEditTime: 2022-08-22 17:41:28
|
||
Discription:
|
||
Environment:
|
||
'''
|
||
import os
|
||
import numpy as np
|
||
from pathlib import Path
|
||
import matplotlib.pyplot as plt
|
||
import seaborn as sns
|
||
import json
|
||
import pandas as pd
|
||
|
||
from matplotlib.font_manager import FontProperties # 导入字体模块
|
||
|
||
def chinese_font():
|
||
''' 设置中文字体,注意需要根据自己电脑情况更改字体路径,否则还是默认的字体
|
||
'''
|
||
try:
|
||
font = FontProperties(
|
||
fname='/System/Library/Fonts/STHeiti Light.ttc', size=15) # fname系统字体路径,此处是mac的
|
||
except:
|
||
font = None
|
||
return font
|
||
|
||
def plot_rewards_cn(rewards, ma_rewards, cfg, tag='train'):
|
||
''' 中文画图
|
||
'''
|
||
sns.set()
|
||
plt.figure()
|
||
plt.title(u"{}环境下{}算法的学习曲线".format(cfg.env_name,
|
||
cfg.algo_name), fontproperties=chinese_font())
|
||
plt.xlabel(u'回合数', fontproperties=chinese_font())
|
||
plt.plot(rewards)
|
||
plt.plot(ma_rewards)
|
||
plt.legend((u'奖励', u'滑动平均奖励',), loc="best", prop=chinese_font())
|
||
if cfg.save:
|
||
plt.savefig(cfg.result_path+f"{tag}_rewards_curve_cn")
|
||
# plt.show()
|
||
def smooth(data, weight=0.9):
|
||
'''用于平滑曲线,类似于Tensorboard中的smooth
|
||
|
||
Args:
|
||
data (List):输入数据
|
||
weight (Float): 平滑权重,处于0-1之间,数值越高说明越平滑,一般取0.9
|
||
|
||
Returns:
|
||
smoothed (List): 平滑后的数据
|
||
'''
|
||
last = data[0] # First value in the plot (first timestep)
|
||
smoothed = list()
|
||
for point in data:
|
||
smoothed_val = last * weight + (1 - weight) * point # 计算平滑值
|
||
smoothed.append(smoothed_val)
|
||
last = smoothed_val
|
||
return smoothed
|
||
|
||
def plot_rewards(rewards,cfg,path=None,tag='train'):
|
||
sns.set()
|
||
plt.figure() # 创建一个图形实例,方便同时多画几个图
|
||
plt.title(f"{tag}ing curve on {cfg.device} of {cfg.algo_name} for {cfg.env_name}")
|
||
plt.xlabel('epsiodes')
|
||
plt.plot(rewards, label='rewards')
|
||
plt.plot(smooth(rewards), label='smoothed')
|
||
plt.legend()
|
||
if cfg.save_fig:
|
||
plt.savefig(f"{path}/{tag}ing_curve.png")
|
||
if cfg.show_fig:
|
||
plt.show()
|
||
|
||
def plot_losses(losses, algo="DQN", save=True, path='./'):
|
||
sns.set()
|
||
plt.figure()
|
||
plt.title("loss curve of {}".format(algo))
|
||
plt.xlabel('epsiodes')
|
||
plt.plot(losses, label='rewards')
|
||
plt.legend()
|
||
if save:
|
||
plt.savefig(path+"losses_curve")
|
||
plt.show()
|
||
|
||
def save_results(res_dic, tag='train', path = None):
|
||
''' 保存奖励
|
||
'''
|
||
Path(path).mkdir(parents=True, exist_ok=True)
|
||
df = pd.DataFrame(res_dic)
|
||
df.to_csv(f"{path}/{tag}ing_results.csv",index=None)
|
||
print('Results saved!')
|
||
|
||
|
||
def make_dir(*paths):
|
||
''' 创建文件夹
|
||
'''
|
||
for path in paths:
|
||
Path(path).mkdir(parents=True, exist_ok=True)
|
||
|
||
|
||
def del_empty_dir(*paths):
|
||
''' 删除目录下所有空文件夹
|
||
'''
|
||
for path in paths:
|
||
dirs = os.listdir(path)
|
||
for dir in dirs:
|
||
if not os.listdir(os.path.join(path, dir)):
|
||
os.removedirs(os.path.join(path, dir))
|
||
|
||
def save_args(args,path=None):
|
||
# 保存参数
|
||
args_dict = vars(args)
|
||
Path(path).mkdir(parents=True, exist_ok=True)
|
||
with open(f"{path}/params.json", 'w') as fp:
|
||
json.dump(args_dict, fp)
|
||
print("Parameters saved!")
|
||
|
||
def all_seed(env,seed = 1):
|
||
''' omnipotent seed for RL, attention the position of seed function, you'd better put it just following the env create function
|
||
Args:
|
||
env (_type_):
|
||
seed (int, optional): _description_. Defaults to 1.
|
||
'''
|
||
import torch
|
||
import numpy as np
|
||
import random
|
||
print(f"seed = {seed}")
|
||
env.seed(seed) # env config
|
||
np.random.seed(seed)
|
||
random.seed(seed)
|
||
torch.manual_seed(seed) # config for CPU
|
||
torch.cuda.manual_seed(seed) # config for GPU
|
||
os.environ['PYTHONHASHSEED'] = str(seed) # config for python scripts
|
||
# config for cudnn
|
||
torch.backends.cudnn.deterministic = True
|
||
torch.backends.cudnn.benchmark = False
|
||
torch.backends.cudnn.enabled = False
|
||
|