140 lines
5.4 KiB
Python
140 lines
5.4 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: John
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2020-11-22 23:21:53
|
||
LastEditor: John
|
||
LastEditTime: 2022-08-22 17:40:07
|
||
Discription:
|
||
Environment:
|
||
'''
|
||
import sys,os
|
||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||
parent_path = os.path.dirname(curr_path) # parent path
|
||
sys.path.append(parent_path) # add to system path
|
||
|
||
import gym
|
||
import torch
|
||
import datetime
|
||
import argparse
|
||
from itertools import count
|
||
import torch.nn.functional as F
|
||
from pg import PolicyGradient
|
||
from common.utils import save_results, make_dir,all_seed,save_args,plot_rewards
|
||
from common.models import MLP
|
||
from common.memories import PGReplay
|
||
|
||
|
||
def get_args():
|
||
""" Hyperparameters
|
||
"""
|
||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
|
||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||
parser.add_argument('--algo_name',default='PolicyGradient',type=str,help="name of algorithm")
|
||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
|
||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||
parser.add_argument('--lr',default=0.005,type=float,help="learning rate")
|
||
parser.add_argument('--update_fre',default=8,type=int)
|
||
parser.add_argument('--hidden_dim',default=36,type=int)
|
||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||
parser.add_argument('--seed',default=1,type=int,help="seed")
|
||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||
'/' + curr_time + '/results/' )
|
||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||
'/' + curr_time + '/models/' ) # path to save models
|
||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||
args = parser.parse_args([])
|
||
return args
|
||
|
||
class PGNet(MLP):
|
||
''' instead of outputing action, PG Net outputs propabilities of actions, we can use class inheritance from MLP here
|
||
'''
|
||
def forward(self, x):
|
||
x = F.relu(self.fc1(x))
|
||
x = F.relu(self.fc2(x))
|
||
x = F.sigmoid(self.fc3(x))
|
||
return x
|
||
|
||
def env_agent_config(cfg):
|
||
env = gym.make(cfg.env_name)
|
||
if cfg.seed !=0: # set random seed
|
||
all_seed(env,seed=cfg.seed)
|
||
n_states = env.observation_space.shape[0]
|
||
n_actions = env.action_space.n # action dimension
|
||
print(f"state dim: {n_states}, action dim: {n_actions}")
|
||
model = PGNet(n_states,1,hidden_dim=cfg.hidden_dim)
|
||
memory = PGReplay()
|
||
agent = PolicyGradient(n_states,model,memory,cfg)
|
||
return env,agent
|
||
|
||
def train(cfg,env,agent):
|
||
print('Start training!')
|
||
print(f'Env:{cfg.env_name}, Algo:{cfg.algo_name}, Device:{cfg.device}')
|
||
rewards = []
|
||
for i_ep in range(cfg.train_eps):
|
||
state = env.reset()
|
||
ep_reward = 0
|
||
for _ in count():
|
||
action = agent.sample_action(state) # sample action
|
||
next_state, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
if done:
|
||
reward = 0
|
||
agent.memory.push((state,float(action),reward))
|
||
state = next_state
|
||
if done:
|
||
print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}')
|
||
break
|
||
if (i_ep+1) % cfg.update_fre == 0:
|
||
agent.update()
|
||
rewards.append(ep_reward)
|
||
print('Finish training!')
|
||
env.close() # close environment
|
||
res_dic = {'episodes':range(len(rewards)),'rewards':rewards}
|
||
return res_dic
|
||
|
||
|
||
def test(cfg,env,agent):
|
||
print("start testing!")
|
||
print(f"Env: {cfg.env_name}, Algo: {cfg.algo_name}, Device: {cfg.device}")
|
||
rewards = []
|
||
for i_ep in range(cfg.test_eps):
|
||
state = env.reset()
|
||
ep_reward = 0
|
||
for _ in count():
|
||
action = agent.predict_action(state)
|
||
next_state, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
if done:
|
||
reward = 0
|
||
state = next_state
|
||
if done:
|
||
print(f'Episode: {i_ep+1}/{cfg.test_eps},Reward: {ep_reward:.2f}')
|
||
break
|
||
rewards.append(ep_reward)
|
||
print("finish testing!")
|
||
env.close()
|
||
return {'episodes':range(len(rewards)),'rewards':rewards}
|
||
|
||
if __name__ == "__main__":
|
||
cfg = get_args()
|
||
env, agent = env_agent_config(cfg)
|
||
res_dic = train(cfg, env, agent)
|
||
save_args(cfg,path = cfg.result_path) # save parameters
|
||
agent.save_model(path = cfg.model_path) # save models
|
||
save_results(res_dic, tag = 'train', path = cfg.result_path) # save results
|
||
plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "train") # plot results
|
||
# testing
|
||
env, agent = env_agent_config(cfg) # create new env for testing, sometimes can ignore this step
|
||
agent.load_model(path = cfg.model_path) # load model
|
||
res_dic = test(cfg, env, agent)
|
||
save_results(res_dic, tag='test',
|
||
path = cfg.result_path)
|
||
plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "test")
|
||
|
||
|