82 lines
3.1 KiB
Python
82 lines
3.1 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
@Author: John
|
||
@Email: johnjim0816@gmail.com
|
||
@Date: 2020-06-11 20:58:21
|
||
@LastEditor: John
|
||
LastEditTime: 2021-09-16 01:31:33
|
||
@Discription:
|
||
@Environment: python 3.7.7
|
||
'''
|
||
import sys,os
|
||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||
parent_path = os.path.dirname(curr_path) # 父路径
|
||
sys.path.append(parent_path) # 添加路径到系统路径sys.path
|
||
|
||
import datetime
|
||
import gym
|
||
import torch
|
||
|
||
from DDPG.env import NormalizedActions
|
||
from DDPG.agent import DDPG
|
||
from DDPG.train import train,test
|
||
from common.utils import save_results,make_dir
|
||
from common.utils import plot_rewards
|
||
|
||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||
algo_name = 'DDPG' # 算法名称
|
||
env_name = 'Pendulum-v1' # 环境名称,gym新版本(约0.21.0之后)中Pendulum-v0改为Pendulum-v1
|
||
|
||
class DDPGConfig:
|
||
def __init__(self):
|
||
self.algo_name = algo_name # 算法名称
|
||
self.env_name = env_name # 环境名称
|
||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||
self.train_eps = 300 # 训练的回合数
|
||
self.test_eps = 50 # 测试的回合数
|
||
self.gamma = 0.99 # 折扣因子
|
||
self.critic_lr = 1e-3 # 评论家网络的学习率
|
||
self.actor_lr = 1e-4 # 演员网络的学习率
|
||
self.memory_capacity = 8000 # 经验回放的容量
|
||
self.batch_size = 128 # mini-batch SGD中的批量大小
|
||
self.target_update = 2 # 目标网络的更新频率
|
||
self.hidden_dim = 256 # 网络隐藏层维度
|
||
self.soft_tau = 1e-2 # 软更新参数
|
||
|
||
class PlotConfig:
|
||
def __init__(self) -> None:
|
||
self.algo_name = algo_name # 算法名称
|
||
self.env_name = env_name # 环境名称
|
||
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||
'/'+curr_time+'/results/' # 保存结果的路径
|
||
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||
'/'+curr_time+'/models/' # 保存模型的路径
|
||
self.save = True # 是否保存图片
|
||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||
|
||
def env_agent_config(cfg,seed=1):
|
||
env = NormalizedActions(gym.make(cfg.env_name)) # 装饰action噪声
|
||
env.seed(seed) # 随机种子
|
||
state_dim = env.observation_space.shape[0]
|
||
action_dim = env.action_space.shape[0]
|
||
agent = DDPG(state_dim,action_dim,cfg)
|
||
return env,agent
|
||
|
||
cfg = DDPGConfig()
|
||
plot_cfg = PlotConfig()
|
||
# 训练
|
||
env,agent = env_agent_config(cfg,seed=1)
|
||
rewards, ma_rewards = train(cfg, env, agent)
|
||
make_dir(plot_cfg.result_path, plot_cfg.model_path)
|
||
agent.save(path=plot_cfg.model_path)
|
||
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path)
|
||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
|
||
# 测试
|
||
env,agent = env_agent_config(cfg,seed=10)
|
||
agent.load(path=plot_cfg.model_path)
|
||
rewards,ma_rewards = test(plot_cfg,env,agent)
|
||
save_results(rewards,ma_rewards,tag = 'test',path = cfg.result_path)
|
||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果
|
||
|