Files
easy-rl/notebooks/envs/racetrack.py
2022-12-04 20:54:36 +08:00

244 lines
9.8 KiB
Python

import time
import random
import numpy as np
import os
import matplotlib.pyplot as plt
import matplotlib.patheffects as pe
from IPython.display import clear_output
from gym.spaces import Discrete,Box
from gym import Env
from matplotlib import colors
class RacetrackEnv(Env) :
"""
Class representing a race-track environment inspired by exercise 5.12 in Sutton & Barto 2018 (p.111).
Please do not make changes to this class - it will be overwritten with a clean version when it comes to marking.
The dynamics of this environment are detailed in this coursework exercise's jupyter notebook, although I have
included rather verbose comments here for those of you who are interested in how the environment has been
implemented (though this should not impact your solution code).ss
"""
ACTIONS_DICT = {
0 : (1, -1), # Acc Vert., Brake Horiz.
1 : (1, 0), # Acc Vert., Hold Horiz.
2 : (1, 1), # Acc Vert., Acc Horiz.
3 : (0, -1), # Hold Vert., Brake Horiz.
4 : (0, 0), # Hold Vert., Hold Horiz.
5 : (0, 1), # Hold Vert., Acc Horiz.
6 : (-1, -1), # Brake Vert., Brake Horiz.
7 : (-1, 0), # Brake Vert., Hold Horiz.
8 : (-1, 1) # Brake Vert., Acc Horiz.
}
CELL_TYPES_DICT = {
0 : "track",
1 : "wall",
2 : "start",
3 : "goal"
}
metadata = {'render_modes': ['human'],
"render_fps": 4,}
def __init__(self,render_mode = 'human') :
# Load racetrack map from file.
self.track = np.flip(np.loadtxt(os.path.dirname(__file__)+"/track.txt", dtype = int), axis = 0)
# Discover start grid squares.
self.initial_states = []
for y in range(self.track.shape[0]) :
for x in range(self.track.shape[1]) :
if (self.CELL_TYPES_DICT[self.track[y, x]] == "start") :
self.initial_states.append((y, x))
high= np.array([np.finfo(np.float32).max, np.finfo(np.float32).max, np.finfo(np.float32).max, np.finfo(np.float32).max])
self.observation_space = Box(low=-high, high=high, shape=(4,), dtype=np.float32)
self.action_space = Discrete(9)
self.is_reset = False
def step(self, action : int) :
"""
Takes a given action in the environment's current state, and returns a next state,
reward, and whether the next state is done or not.
Arguments:
action {int} -- The action to take in the environment's current state. Should be an integer in the range [0-8].
Raises:
RuntimeError: Raised when the environment needs resetting.\n
TypeError: Raised when an action of an invalid type is given.\n
ValueError: Raised when an action outside the range [0-8] is given.\n
Returns:
A tuple of:\n
{(int, int, int, int)} -- The next state, a tuple of (y_pos, x_pos, y_velocity, x_velocity).\n
{int} -- The reward earned by taking the given action in the current environment state.\n
{bool} -- Whether the environment's next state is done or not.\n
"""
# Check whether a reset is needed.
if (not self.is_reset) :
raise RuntimeError(".step() has been called when .reset() is needed.\n" +
"You need to call .reset() before using .step() for the first time, and after an episode ends.\n" +
".reset() initialises the environment at the start of an episode, then returns an initial state.")
# Check that action is the correct type (either a python integer or a numpy integer).
if (not (isinstance(action, int) or isinstance(action, np.integer))) :
raise TypeError("action should be an integer.\n" +
"action value {} of type {} was supplied.".format(action, type(action)))
# Check that action is an allowed value.
if (action < 0 or action > 8) :
raise ValueError("action must be an integer in the range [0-8] corresponding to one of the legal actions.\n" +
"action value {} was supplied.".format(action))
# Update Velocity.
# With probability, 0.85 update velocity components as intended.
if (np.random.uniform() < 0.8) :
(d_y, d_x) = self.ACTIONS_DICT[action]
# With probability, 0.15 Do not change velocity components.
else :
(d_y, d_x) = (0, 0)
self.velocity = (self.velocity[0] + d_y, self.velocity[1] + d_x)
# Keep velocity within bounds (-10, 10).
if (self.velocity[0] > 10) :
self.velocity[0] = 10
elif (self.velocity[0] < -10) :
self.velocity[0] = -10
if (self.velocity[1] > 10) :
self.velocity[1] = 10
elif (self.velocity[1] < -10) :
self.velocity[1] = -10
# Update Position.
new_position = (self.position[0] + self.velocity[0], self.position[1] + self.velocity[1])
reward = 0
done = False
# If position is out-of-bounds, return to start and set velocity components to zero.
if (new_position[0] < 0 or new_position[1] < 0 or new_position[0] >= self.track.shape[0] or new_position[1] >= self.track.shape[1]) :
self.position = random.choice(self.initial_states)
self.velocity = (0, 0)
reward -= 10
# If position is in a wall grid-square, return to start and set velocity components to zero.
elif (self.CELL_TYPES_DICT[self.track[new_position]] == "wall") :
self.position = random.choice(self.initial_states)
self.velocity = (0, 0)
reward -= 10
# If position is in a track grid-squre or a start-square, update position.
elif (self.CELL_TYPES_DICT[self.track[new_position]] in ["track", "start"]) :
self.position = new_position
# If position is in a goal grid-square, end episode.
elif (self.CELL_TYPES_DICT[self.track[new_position]] == "goal") :
self.position = new_position
reward += 10
done = True
# If this gets reached, then the student has touched something they shouldn't have. Naughty!
else :
raise RuntimeError("You've met with a terrible fate, haven't you?\nDon't modify things you shouldn't!")
# Penalise every timestep.
reward -= 1
# Require a reset if the current state is done.
if (done) :
self.is_reset = False
# Return next state, reward, and whether the episode has ended.
return np.array([self.position[0], self.position[1], self.velocity[0], self.velocity[1]]), reward, done,{}
def reset(self,seed=None) :
"""
Resets the environment, ready for a new episode to begin, then returns an initial state.
The initial state will be a starting grid square randomly chosen using a uniform distribution,
with both components of the velocity being zero.
Returns:
{(int, int, int, int)} -- an initial state, a tuple of (y_pos, x_pos, y_velocity, x_velocity).
"""
# Pick random starting grid-square.
self.position = random.choice(self.initial_states)
# Set both velocity components to zero.
self.velocity = (0, 0)
self.is_reset = True
return np.array([self.position[0], self.position[1], self.velocity[0], self.velocity[1]])
def render(self, render_mode = 'human') :
"""
Renders a pretty matplotlib plot representing the current state of the environment.
Calling this method on subsequent timesteps will update the plot.
This is VERY VERY SLOW and wil slow down training a lot. Only use for debugging/testing.
Arguments:
sleep_time {float} -- How many seconds (or partial seconds) you want to wait on this rendered frame.
"""
# Turn interactive render_mode on.
plt.ion()
fig = plt.figure(num = "env_render")
ax = plt.gca()
ax.clear()
clear_output(wait = True)
# Prepare the environment plot and mark the car's position.
env_plot = np.copy(self.track)
env_plot[self.position] = 4
env_plot = np.flip(env_plot, axis = 0)
# Plot the gridworld.
cmap = colors.ListedColormap(["white", "black", "green", "red", "yellow"])
bounds = list(range(6))
norm = colors.BoundaryNorm(bounds, cmap.N)
ax.imshow(env_plot, cmap = cmap, norm = norm, zorder = 0)
# Plot the velocity.
if (not self.velocity == (0, 0)) :
ax.arrow(self.position[1], self.track.shape[0] - 1 - self.position[0], self.velocity[1], -self.velocity[0],
path_effects=[pe.Stroke(linewidth=1, foreground='black')], color = "yellow", width = 0.1, length_includes_head = True, zorder = 2)
# Set up axes.
ax.grid(which = 'major', axis = 'both', linestyle = '-', color = 'k', linewidth = 2, zorder = 1)
ax.set_xticks(np.arange(-0.5, self.track.shape[1] , 1));
ax.set_xticklabels([])
ax.set_yticks(np.arange(-0.5, self.track.shape[0], 1));
ax.set_yticklabels([])
# Draw everything.
#fig.canvas.draw()
#fig.canvas.flush_events()
plt.show()
# time sleep
time.sleep(0.1)
def get_actions(self) :
"""
Returns the available actions in the current state - will always be a list
of integers in the range [0-8].
"""
return [*self.ACTIONS_DICT]
if __name__ == "__main__":
num_steps = 1000000
env = RacetrackEnv()
state = env.reset()
print(state)
for _ in range(num_steps) :
next_state, reward, done,_ = env.step(random.choice(env.get_actions()))
print(next_state)
env.render()
if (done) :
_ = env.reset()