155 lines
5.9 KiB
Python
155 lines
5.9 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: John
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2020-09-11 23:03:00
|
||
LastEditor: John
|
||
LastEditTime: 2020-10-07 21:05:33
|
||
Discription:
|
||
Environment:
|
||
'''
|
||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
# -*- coding: utf-8 -*-
|
||
|
||
import gym
|
||
from gridworld import CliffWalkingWapper, FrozenLakeWapper
|
||
from agent import QLearning
|
||
import os
|
||
import numpy as np
|
||
import argparse
|
||
import time
|
||
import matplotlib.pyplot as plt
|
||
def get_args():
|
||
'''训练的模型参数
|
||
'''
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument("--gamma", default=0.9,
|
||
type=float, help="reward 的衰减率")
|
||
parser.add_argument("--epsilon_start", default=0.9,
|
||
type=float,help="e-greedy策略中初始epsilon")
|
||
parser.add_argument("--epsilon_end", default=0.1, type=float,help="e-greedy策略中的结束epsilon")
|
||
parser.add_argument("--epsilon_decay", default=200, type=float,help="e-greedy策略中epsilon的衰减率")
|
||
parser.add_argument("--policy_lr", default=0.1, type=float,help="学习率")
|
||
parser.add_argument("--max_episodes", default=500, type=int,help="训练的最大episode数目")
|
||
|
||
config = parser.parse_args()
|
||
|
||
return config
|
||
|
||
def train(cfg):
|
||
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||
# env = FrozenLakeWapper(env)
|
||
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
||
env = CliffWalkingWapper(env)
|
||
agent = QLearning(
|
||
obs_dim=env.observation_space.n,
|
||
action_dim=env.action_space.n,
|
||
learning_rate=cfg.policy_lr,
|
||
gamma=cfg.gamma,
|
||
epsilon_start=cfg.epsilon_start,epsilon_end=cfg.epsilon_end,epsilon_decay=cfg.epsilon_decay)
|
||
render = False # 是否打开GUI画面
|
||
rewards = [] # 记录所有episode的reward
|
||
MA_rewards = [] # 记录滑动平均的reward
|
||
steps = []# 记录所有episode的steps
|
||
for i_episode in range(1,cfg.max_episodes+1):
|
||
ep_reward = 0 # 记录每个episode的reward
|
||
ep_steps = 0 # 记录每个episode走了多少step
|
||
obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||
while True:
|
||
action = agent.sample(obs) # 根据算法选择一个动作
|
||
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||
# 训练 Q-learning算法
|
||
agent.learn(obs, action, reward, next_obs, done) # 不需要下一步的action
|
||
|
||
obs = next_obs # 存储上一个观察值
|
||
ep_reward += reward
|
||
ep_steps += 1 # 计算step数
|
||
if render:
|
||
env.render() #渲染新的一帧图形
|
||
if done:
|
||
break
|
||
steps.append(ep_steps)
|
||
rewards.append(ep_reward)
|
||
# 计算滑动平均的reward
|
||
if i_episode == 1:
|
||
MA_rewards.append(ep_reward)
|
||
else:
|
||
MA_rewards.append(
|
||
0.9*MA_rewards[-1]+0.1*ep_reward)
|
||
print('Episode %s: steps = %s , reward = %.1f, explore = %.2f' % (i_episode, ep_steps,
|
||
ep_reward,agent.epsilon))
|
||
# 每隔20个episode渲染一下看看效果
|
||
if i_episode % 20 == 0:
|
||
render = True
|
||
else:
|
||
render = False
|
||
agent.save() # 训练结束,保存模型
|
||
|
||
output_path = os.path.dirname(__file__)+"/result/"
|
||
# 检测是否存在文件夹
|
||
if not os.path.exists(output_path):
|
||
os.mkdir(output_path)
|
||
np.save(output_path+"rewards_train.npy", rewards)
|
||
np.save(output_path+"MA_rewards_train.npy", MA_rewards)
|
||
np.save(output_path+"steps_train.npy", steps)
|
||
|
||
def test(cfg):
|
||
|
||
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
||
env = CliffWalkingWapper(env)
|
||
agent = QLearning(
|
||
obs_dim=env.observation_space.n,
|
||
action_dim=env.action_space.n,
|
||
learning_rate=cfg.policy_lr,
|
||
gamma=cfg.gamma,
|
||
epsilon_start=cfg.epsilon_start,epsilon_end=cfg.epsilon_end,epsilon_decay=cfg.epsilon_decay)
|
||
agent.load() # 导入保存的模型
|
||
rewards = [] # 记录所有episode的reward
|
||
MA_rewards = [] # 记录滑动平均的reward
|
||
steps = []# 记录所有episode的steps
|
||
for i_episode in range(1,10+1):
|
||
ep_reward = 0 # 记录每个episode的reward
|
||
ep_steps = 0 # 记录每个episode走了多少step
|
||
obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||
while True:
|
||
action = agent.predict(obs) # 根据算法选择一个动作
|
||
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||
obs = next_obs # 存储上一个观察值
|
||
time.sleep(0.5)
|
||
env.render()
|
||
ep_reward += reward
|
||
ep_steps += 1 # 计算step数
|
||
if done:
|
||
break
|
||
steps.append(ep_steps)
|
||
rewards.append(ep_reward)
|
||
# 计算滑动平均的reward
|
||
if i_episode == 1:
|
||
MA_rewards.append(ep_reward)
|
||
else:
|
||
MA_rewards.append(
|
||
0.9*MA_rewards[-1]+0.1*ep_reward)
|
||
print('Episode %s: steps = %s , reward = %.1f' % (i_episode, ep_steps, ep_reward))
|
||
plt.plot(MA_rewards)
|
||
plt.show()
|
||
def main():
|
||
cfg = get_args()
|
||
# train(cfg)
|
||
test(cfg)
|
||
|
||
if __name__ == "__main__":
|
||
main() |