139 lines
4.8 KiB
Python
139 lines
4.8 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: JiangJi
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2021-04-29 12:59:22
|
||
LastEditor: JiangJi
|
||
LastEditTime: 2021-05-06 16:58:01
|
||
Discription:
|
||
Environment:
|
||
'''
|
||
import sys,os
|
||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||
parent_path = os.path.dirname(curr_path) # 父路径
|
||
sys.path.append(parent_path) # 添加路径到系统路径
|
||
|
||
import gym
|
||
import torch
|
||
import datetime
|
||
|
||
from SAC.env import NormalizedActions
|
||
from SAC.agent import SAC
|
||
from common.utils import save_results, make_dir
|
||
from common.plot import plot_rewards
|
||
|
||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||
|
||
class SACConfig:
|
||
def __init__(self) -> None:
|
||
self.algo = 'SAC'
|
||
self.env_name = 'Pendulum-v1'
|
||
self.result_path = curr_path+"/outputs/" +self.env_name+'/'+curr_time+'/results/' # path to save results
|
||
self.model_path = curr_path+"/outputs/" +self.env_name+'/'+curr_time+'/models/' # path to save models
|
||
self.train_eps = 300
|
||
self.train_steps = 500
|
||
self.test_eps = 50
|
||
self.eval_steps = 500
|
||
self.gamma = 0.99
|
||
self.mean_lambda=1e-3
|
||
self.std_lambda=1e-3
|
||
self.z_lambda=0.0
|
||
self.soft_tau=1e-2
|
||
self.value_lr = 3e-4
|
||
self.soft_q_lr = 3e-4
|
||
self.policy_lr = 3e-4
|
||
self.capacity = 1000000
|
||
self.hidden_dim = 256
|
||
self.batch_size = 128
|
||
self.device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
class PlotConfig(SACConfig):
|
||
def __init__(self) -> None:
|
||
super().__init__()
|
||
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||
'/'+curr_time+'/results/' # 保存结果的路径
|
||
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||
'/'+curr_time+'/models/' # 保存模型的路径
|
||
self.save = True # 是否保存图片
|
||
|
||
def env_agent_config(cfg,seed=1):
|
||
env = NormalizedActions(gym.make(cfg.env_name))
|
||
env.seed(seed)
|
||
action_dim = env.action_space.shape[0]
|
||
state_dim = env.observation_space.shape[0]
|
||
agent = SAC(state_dim,action_dim,cfg)
|
||
return env,agent
|
||
|
||
def train(cfg,env,agent):
|
||
print('开始训练!')
|
||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||
rewards = [] # 记录所有回合的奖励
|
||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||
for i_ep in range(cfg.train_eps):
|
||
ep_reward = 0 # 记录一回合内的奖励
|
||
state = env.reset() # 重置环境,返回初始状态
|
||
for i_step in range(cfg.train_steps):
|
||
action = agent.policy_net.get_action(state)
|
||
next_state, reward, done, _ = env.step(action)
|
||
agent.memory.push(state, action, reward, next_state, done)
|
||
agent.update()
|
||
state = next_state
|
||
ep_reward += reward
|
||
if done:
|
||
break
|
||
if (i_ep+1)%10==0:
|
||
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}")
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print('Complete training!')
|
||
return rewards, ma_rewards
|
||
|
||
def eval(cfg,env,agent):
|
||
print('Start to eval !')
|
||
print(f'Env: {cfg.env_name}, Algorithm: {cfg.algo}, Device: {cfg.device}')
|
||
rewards = []
|
||
ma_rewards = [] # moveing average reward
|
||
for i_ep in range(cfg.test_eps):
|
||
state = env.reset()
|
||
ep_reward = 0
|
||
for i_step in range(cfg.eval_steps):
|
||
action = agent.policy_net.get_action(state)
|
||
next_state, reward, done, _ = env.step(action)
|
||
state = next_state
|
||
ep_reward += reward
|
||
if done:
|
||
break
|
||
if (i_ep+1)%10==0:
|
||
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}")
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print('Complete evaling!')
|
||
return rewards, ma_rewards
|
||
|
||
if __name__ == "__main__":
|
||
cfg=SACConfig()
|
||
plot_cfg = PlotConfig()
|
||
# train
|
||
env,agent = env_agent_config(cfg,seed=1)
|
||
rewards, ma_rewards = train(cfg, env, agent)
|
||
make_dir(plot_cfg.result_path, plot_cfg.model_path)
|
||
agent.save(path=plot_cfg.model_path)
|
||
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path)
|
||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train")
|
||
# eval
|
||
env,agent = env_agent_config(cfg,seed=10)
|
||
agent.load(path=plot_cfg.model_path)
|
||
rewards,ma_rewards = eval(cfg,env,agent)
|
||
save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path)
|
||
plot_rewards(rewards,ma_rewards,plot_cfg,tag="eval")
|
||
|
||
|
||
|
||
|