Files
easy-rl/codes/DDPG/task0.py
johnjim0816 75df999258 update
2021-12-22 11:19:13 +08:00

82 lines
3.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 20:58:21
@LastEditor: John
LastEditTime: 2021-09-16 01:31:33
@Discription:
@Environment: python 3.7.7
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径sys.path
import datetime
import gym
import torch
from DDPG.env import NormalizedActions
from DDPG.agent import DDPG
from DDPG.train import train,test
from common.utils import save_results,make_dir
from common.utils import plot_rewards
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
algo_name = 'DDPG' # 算法名称
env_name = 'Pendulum-v1' # 环境名称gym新版本约0.21.0之后中Pendulum-v0改为Pendulum-v1
class DDPGConfig:
def __init__(self):
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.train_eps = 300 # 训练的回合数
self.test_eps = 50 # 测试的回合数
self.gamma = 0.99 # 折扣因子
self.critic_lr = 1e-3 # 评论家网络的学习率
self.actor_lr = 1e-4 # 演员网络的学习率
self.memory_capacity = 8000 # 经验回放的容量
self.batch_size = 128 # mini-batch SGD中的批量大小
self.target_update = 2 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层维度
self.soft_tau = 1e-2 # 软更新参数
class PlotConfig:
def __init__(self) -> None:
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.result_path = curr_path+"/outputs/" + self.env_name + \
'/'+curr_time+'/results/' # 保存结果的路径
self.model_path = curr_path+"/outputs/" + self.env_name + \
'/'+curr_time+'/models/' # 保存模型的路径
self.save = True # 是否保存图片
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
def env_agent_config(cfg,seed=1):
env = NormalizedActions(gym.make(cfg.env_name)) # 装饰action噪声
env.seed(seed) # 随机种子
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
agent = DDPG(n_states,n_actions,cfg)
return env,agent
cfg = DDPGConfig()
plot_cfg = PlotConfig()
# 训练
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(plot_cfg.result_path, plot_cfg.model_path)
agent.save(path=plot_cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path)
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
# 测试
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=plot_cfg.model_path)
rewards,ma_rewards = test(plot_cfg,env,agent)
save_results(rewards,ma_rewards,tag = 'test',path = cfg.result_path)
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果