36 lines
969 B
Python
36 lines
969 B
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
'''
|
|
Author: JiangJi
|
|
Email: johnjim0816@gmail.com
|
|
Date: 2021-05-03 21:38:54
|
|
LastEditor: JiangJi
|
|
LastEditTime: 2021-05-03 21:40:06
|
|
Discription:
|
|
Environment:
|
|
'''
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.distributions import Categorical
|
|
class ActorCritic(nn.Module):
|
|
def __init__(self, num_inputs, num_outputs, hidden_size, std=0.0):
|
|
super(ActorCritic, self).__init__()
|
|
|
|
self.critic = nn.Sequential(
|
|
nn.Linear(num_inputs, hidden_size),
|
|
nn.ReLU(),
|
|
nn.Linear(hidden_size, 1)
|
|
)
|
|
|
|
self.actor = nn.Sequential(
|
|
nn.Linear(num_inputs, hidden_size),
|
|
nn.ReLU(),
|
|
nn.Linear(hidden_size, num_outputs),
|
|
nn.Softmax(dim=1),
|
|
)
|
|
|
|
def forward(self, x):
|
|
value = self.critic(x)
|
|
probs = self.actor(x)
|
|
dist = Categorical(probs)
|
|
return dist, value |