Files
easy-rl/codes
JohnJim0816 747f3238c0 update
2021-05-04 15:30:01 +08:00
..
2021-05-04 15:30:01 +08:00
2021-03-23 16:10:11 +08:00
2021-05-04 15:30:01 +08:00
2021-05-04 15:30:01 +08:00
2021-05-04 15:30:01 +08:00
2021-05-04 15:30:01 +08:00
2021-05-03 23:00:01 +08:00
2021-03-31 15:37:09 +08:00
2021-03-28 11:18:52 +08:00
2021-04-28 22:11:22 +08:00
2021-04-28 22:11:22 +08:00
2021-05-03 23:00:01 +08:00
2021-04-28 22:11:22 +08:00
2021-04-29 14:44:25 +08:00
2021-03-28 11:18:52 +08:00
2021-04-28 22:11:22 +08:00
2021-03-23 16:10:11 +08:00
2021-05-04 15:30:01 +08:00
2021-05-03 23:00:01 +08:00

Eng|中文

Introduction

This repo is used to learn basic RL algorithms, we will make it detailed comment and clear structure as much as possible:

The code structure mainly contains several scripts as following

  • model.py basic network model of RL, like MLP, CNN
  • memory.py Replay Buffer
  • plot.py use seaborn to plot rewards curvesaved in folder result.
  • env.py to custom or normalize environments
  • agent.py core algorithms, include a python Class with functions(choose action, update)
  • main.py main function

Note that model.py,memory.py,plot.py shall be utilized in different algorithmsthus they are put into common folder。

Runnig Environment

python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.18.0

Usage

run python scripts or jupyter notebook file with train to train the agent, if there is a task like task0_train.py, it means to train with task 0.

similar to file with eval, which means to evaluate the agent.

Schedule

Name Related materials Used Envs Notes
On-Policy First-Visit MC medium blog Racetrack
Q-Learning towardsdatascience blog,q learning paper CliffWalking-v0
Sarsa geeksforgeeks blog Racetrack
DQN DQN Paper,Nature DQN Paper CartPole-v0
DQN-cnn DQN Paper CartPole-v0
DoubleDQN DoubleDQN Paper CartPole-v0
Hierarchical DQN H-DQN Paper CartPole-v0
PolicyGradient Lil'log CartPole-v0
A2C A3C Paper CartPole-v0
SAC SAC Paper Pendulum-v0
PPO PPO paper CartPole-v0
DDPG DDPG Paper Pendulum-v0
TD3 TD3 Paper HalfCheetah-v2

Refs

RL-Adventure-2

RL-Adventure