127 lines
5.5 KiB
Python
127 lines
5.5 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
@Author: John
|
||
@Email: johnjim0816@gmail.com
|
||
@Date: 2020-06-12 00:48:57
|
||
@LastEditor: John
|
||
LastEditTime: 2020-12-22 15:39:46
|
||
@Discription:
|
||
@Environment: python 3.7.7
|
||
'''
|
||
import gym
|
||
import torch
|
||
from torch.utils.tensorboard import SummaryWriter
|
||
import os
|
||
from agent import DQN
|
||
from params import SEQUENCE,SAVED_MODEL_PATH,RESULT_PATH
|
||
from params import get_args
|
||
from utils import save_results
|
||
|
||
def train(cfg):
|
||
print('Start to train !')
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要
|
||
env.seed(1) # 设置env随机种子
|
||
n_states = env.observation_space.shape[0]
|
||
n_actions = env.action_space.n
|
||
agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,
|
||
epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size)
|
||
rewards = []
|
||
moving_average_rewards = []
|
||
ep_steps = []
|
||
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/train/" + SEQUENCE
|
||
writer = SummaryWriter(log_dir)
|
||
for i_episode in range(1, cfg.train_eps+1):
|
||
state = env.reset() # reset环境状态
|
||
ep_reward = 0
|
||
for i_step in range(1, cfg.train_steps+1):
|
||
action = agent.choose_action(state) # 根据当前环境state选择action
|
||
next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||
ep_reward += reward
|
||
agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory
|
||
state = next_state # 跳转到下一个状态
|
||
agent.update() # 每步更新网络
|
||
if done:
|
||
break
|
||
# 更新target network,复制DQN中的所有weights and biases
|
||
if i_episode % cfg.target_update == 0:
|
||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||
print('Episode:', i_episode, ' Reward: %i' %
|
||
int(ep_reward), 'n_steps:', i_step, 'done: ', done,' Explore: %.2f' % agent.epsilon)
|
||
ep_steps.append(i_step)
|
||
rewards.append(ep_reward)
|
||
# 计算滑动窗口的reward
|
||
if i_episode == 1:
|
||
moving_average_rewards.append(ep_reward)
|
||
else:
|
||
moving_average_rewards.append(
|
||
0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
|
||
writer.add_scalar('steps_of_each_episode',
|
||
ep_steps[-1], i_episode)
|
||
writer.close()
|
||
print('Complete training!')
|
||
''' 保存模型 '''
|
||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||
os.mkdir(SAVED_MODEL_PATH)
|
||
agent.save_model(SAVED_MODEL_PATH+'checkpoint.pth')
|
||
print('model saved!')
|
||
'''存储reward等相关结果'''
|
||
save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path=RESULT_PATH)
|
||
|
||
|
||
def eval(cfg, saved_model_path = SAVED_MODEL_PATH):
|
||
print('start to eval !')
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要
|
||
env.seed(1) # 设置env随机种子
|
||
n_states = env.observation_space.shape[0]
|
||
n_actions = env.action_space.n
|
||
agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,
|
||
epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size)
|
||
agent.load_model(saved_model_path+'checkpoint.pth')
|
||
rewards = []
|
||
moving_average_rewards = []
|
||
ep_steps = []
|
||
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/eval/" + SEQUENCE
|
||
writer = SummaryWriter(log_dir)
|
||
for i_episode in range(1, cfg.eval_eps+1):
|
||
state = env.reset() # reset环境状态
|
||
ep_reward = 0
|
||
for i_step in range(1, cfg.eval_steps+1):
|
||
action = agent.choose_action(state,train=False) # 根据当前环境state选择action
|
||
next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||
ep_reward += reward
|
||
state = next_state # 跳转到下一个状态
|
||
if done:
|
||
break
|
||
print('Episode:', i_episode, ' Reward: %i' %
|
||
int(ep_reward), 'n_steps:', i_step, 'done: ', done)
|
||
|
||
ep_steps.append(i_step)
|
||
rewards.append(ep_reward)
|
||
# 计算滑动窗口的reward
|
||
if i_episode == 1:
|
||
moving_average_rewards.append(ep_reward)
|
||
else:
|
||
moving_average_rewards.append(
|
||
0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||
|
||
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
|
||
writer.add_scalar('steps_of_each_episode',
|
||
ep_steps[-1], i_episode)
|
||
writer.close()
|
||
'''存储reward等相关结果'''
|
||
save_results(rewards,moving_average_rewards,ep_steps,tag='eval',result_path=RESULT_PATH)
|
||
print('Complete evaling!')
|
||
|
||
if __name__ == "__main__":
|
||
cfg = get_args()
|
||
if cfg.train:
|
||
train(cfg)
|
||
eval(cfg)
|
||
else:
|
||
model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"
|
||
eval(cfg,saved_model_path=model_path)
|