update DoubleDQN
33
codes/DoubleDQN/README.md
Normal file
@@ -0,0 +1,33 @@
|
||||
## 思路
|
||||
|
||||
见[博客](https://blog.csdn.net/JohnJim0/article/details/111552545)
|
||||
|
||||
## 环境
|
||||
|
||||
python 3.7.9
|
||||
|
||||
pytorch 1.6.0
|
||||
|
||||
tensorboard 2.3.0
|
||||
|
||||
torchvision 0.7.0
|
||||
|
||||
## 使用
|
||||
|
||||
|
||||
train:
|
||||
|
||||
```python
|
||||
python main.py
|
||||
```
|
||||
|
||||
eval:
|
||||
|
||||
```python
|
||||
python main.py --train 0
|
||||
```
|
||||
可视化
|
||||
|
||||
```python
|
||||
tensorboard --logdir logs
|
||||
```
|
||||
@@ -5,7 +5,7 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:50:49
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-09-01 22:54:02
|
||||
LastEditTime: 2020-12-22 14:44:46
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
@@ -13,8 +13,6 @@ LastEditTime: 2020-09-01 22:54:02
|
||||
'''
|
||||
|
||||
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
@@ -46,32 +44,41 @@ class DQN:
|
||||
self.loss = 0
|
||||
self.memory = ReplayBuffer(memory_capacity)
|
||||
|
||||
def select_action(self, state):
|
||||
def choose_action(self, state, train=True):
|
||||
'''选择动作
|
||||
Args:
|
||||
state [array]: [description]
|
||||
Returns:
|
||||
action [array]: [description]
|
||||
'''
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
math.exp(-1. * self.actions_count / self.epsilon_decay)
|
||||
self.actions_count += 1
|
||||
if random.random() > self.epsilon:
|
||||
if train:
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
math.exp(-1. * self.actions_count / self.epsilon_decay)
|
||||
self.actions_count += 1
|
||||
if random.random() > self.epsilon:
|
||||
with torch.no_grad():
|
||||
# 先转为张量便于丢给神经网络,state元素数据原本为float64
|
||||
# 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
|
||||
state = torch.tensor(
|
||||
[state], device=self.device, dtype=torch.float32)
|
||||
# 如tensor([[-0.0798, -0.0079]], grad_fn=<AddmmBackward>)
|
||||
q_value = self.policy_net(state)
|
||||
# tensor.max(1)返回每行的最大值以及对应的下标,
|
||||
# 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
|
||||
# 所以tensor.max(1)[1]返回最大值对应的下标,即action
|
||||
action = q_value.max(1)[1].item()
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
else:
|
||||
with torch.no_grad():
|
||||
# 先转为张量便于丢给神经网络,state元素数据原本为float64
|
||||
# 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
|
||||
state = torch.tensor(
|
||||
[state], device=self.device, dtype=torch.float32)
|
||||
# 如tensor([[-0.0798, -0.0079]], grad_fn=<AddmmBackward>)
|
||||
q_value = self.policy_net(state)
|
||||
# tensor.max(1)返回每行的最大值以及对应的下标,
|
||||
# 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
|
||||
# 所以tensor.max(1)[1]返回最大值对应的下标,即action
|
||||
action = q_value.max(1)[1].item()
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
|
||||
# 先转为张量便于丢给神经网络,state元素数据原本为float64
|
||||
# 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
|
||||
state = torch.tensor(
|
||||
[state], device='cpu', dtype=torch.float32)
|
||||
# 如tensor([[-0.0798, -0.0079]], grad_fn=<AddmmBackward>)
|
||||
q_value = self.target_net(state)
|
||||
# tensor.max(1)返回每行的最大值以及对应的下标,
|
||||
# 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
|
||||
# 所以tensor.max(1)[1]返回最大值对应的下标,即action
|
||||
action = q_value.max(1)[1].item()
|
||||
return action
|
||||
def update(self):
|
||||
|
||||
if len(self.memory) < self.batch_size:
|
||||
@@ -93,19 +100,25 @@ class DQN:
|
||||
done_batch), device=self.device).unsqueeze(1) # 将bool转为float然后转为张量
|
||||
|
||||
# 计算当前(s_t,a)对应的Q(s_t, a)
|
||||
# 关于torch.gather,对于a=torch.Tensor([[1,2],[3,4]])
|
||||
# 那么a.gather(1,torch.Tensor([[0],[1]]))=torch.Tensor([[1],[3]])
|
||||
q_values = self.policy_net(state_batch).gather(
|
||||
dim=1, index=action_batch) # 等价于self.forward
|
||||
# 计算所有next states的V(s_{t+1}),即通过target_net中选取reward最大的对应states
|
||||
next_state_values = self.target_net(
|
||||
q_values = self.policy_net(state_batch)
|
||||
next_q_values = self.policy_net(state_batch)
|
||||
# 代入当前选择的action,得到Q(s_t|a=a_t)
|
||||
q_value = q_values.gather(dim=1, index=action_batch)
|
||||
'''以下是Nature DQN的q_target计算方式
|
||||
# 计算所有next states的Q'(s_{t+1})的最大值,Q'为目标网络的q函数
|
||||
next_q_state_value = self.target_net(
|
||||
next_state_batch).max(1)[0].detach() # 比如tensor([ 0.0060, -0.0171,...,])
|
||||
# 计算 expected_q_value
|
||||
# 计算 q_target
|
||||
# 对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward
|
||||
expected_q_values = reward_batch + self.gamma * \
|
||||
next_state_values * (1-done_batch[0])
|
||||
# self.loss = F.smooth_l1_loss(q_values,expected_q_values.unsqueeze(1)) # 计算 Huber loss
|
||||
self.loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算 均方误差loss
|
||||
q_target = reward_batch + self.gamma * next_q_state_value * (1-done_batch[0])
|
||||
'''
|
||||
'''以下是Double DQNq_target计算方式,与NatureDQN稍有不同'''
|
||||
next_target_values = self.target_net(
|
||||
next_state_batch)
|
||||
# 选出Q(s_t‘, a)对应的action,代入到next_target_values获得target net对应的next_q_value,即Q’(s_t|a=argmax Q(s_t‘, a))
|
||||
next_target_q_value = next_target_values.gather(1, torch.max(next_q_values, 1)[1].unsqueeze(1)).squeeze(1)
|
||||
q_target = reward_batch + self.gamma * next_target_q_value * (1-done_batch[0])
|
||||
self.loss = nn.MSELoss()(q_value, q_target.unsqueeze(1)) # 计算 均方误差loss
|
||||
# 优化模型
|
||||
self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step
|
||||
# loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分
|
||||
@@ -113,9 +126,9 @@ class DQN:
|
||||
for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step() # 更新模型
|
||||
|
||||
|
||||
def save_model(self,path):
|
||||
torch.save(self.target_net.state_dict(), path)
|
||||
|
||||
def load_model(self,path):
|
||||
self.policy_net.load_state_dict(torch.load(path))
|
||||
self.target_net.load_state_dict(torch.load(path))
|
||||
@@ -5,45 +5,21 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:48:57
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-09-01 22:54:23
|
||||
LastEditTime: 2020-12-22 15:39:46
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import gym
|
||||
import torch
|
||||
from dqn import DQN
|
||||
from plot import plot
|
||||
import argparse
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
import os
|
||||
from agent import DQN
|
||||
from params import SEQUENCE,SAVED_MODEL_PATH,RESULT_PATH
|
||||
from params import get_args
|
||||
from utils import save_results
|
||||
|
||||
def get_args():
|
||||
'''模型参数
|
||||
'''
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--gamma", default=0.99,
|
||||
type=float) # q-learning中的gamma
|
||||
parser.add_argument("--epsilon_start", default=0.95,
|
||||
type=float) # 基于贪心选择action对应的参数epsilon
|
||||
parser.add_argument("--epsilon_end", default=0.05, type=float)
|
||||
parser.add_argument("--epsilon_decay", default=500, type=float)
|
||||
parser.add_argument("--policy_lr", default=0.01, type=float)
|
||||
parser.add_argument("--memory_capacity", default=1000,
|
||||
type=int, help="capacity of Replay Memory")
|
||||
|
||||
parser.add_argument("--batch_size", default=32, type=int,
|
||||
help="batch size of memory sampling")
|
||||
parser.add_argument("--train_eps", default=200, type=int) # 训练的最大episode数目
|
||||
parser.add_argument("--train_steps", default=200, type=int) # 训练每个episode的长度
|
||||
parser.add_argument("--eval_eps", default=200, type=int) # 训练的最大episode数目
|
||||
parser.add_argument("--eval_steps", default=200, type=int) # 训练每个episode的长度
|
||||
parser.add_argument("--target_update", default=2, type=int,
|
||||
help="when(every default 10 eisodes) to update target net ")
|
||||
config = parser.parse_args()
|
||||
|
||||
return config
|
||||
|
||||
def train():
|
||||
cfg = get_args()
|
||||
# if gpu is to be used
|
||||
def train(cfg):
|
||||
print('Start to train !')
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||||
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要
|
||||
env.seed(1) # 设置env随机种子
|
||||
@@ -54,11 +30,13 @@ def train():
|
||||
rewards = []
|
||||
moving_average_rewards = []
|
||||
ep_steps = []
|
||||
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/train/" + SEQUENCE
|
||||
writer = SummaryWriter(log_dir)
|
||||
for i_episode in range(1, cfg.train_eps+1):
|
||||
state = env.reset() # reset环境状态
|
||||
ep_reward = 0
|
||||
for i_step in range(1, cfg.train_steps+1):
|
||||
action = agent.select_action(state) # 根据当前环境state选择action
|
||||
action = agent.choose_action(state) # 根据当前环境state选择action
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory
|
||||
@@ -79,54 +57,48 @@ def train():
|
||||
else:
|
||||
moving_average_rewards.append(
|
||||
0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||||
import os
|
||||
import numpy as np
|
||||
save_path = os.path.dirname(__file__)+"/saved_model/"
|
||||
if not os.path.exists(save_path):
|
||||
os.mkdir(save_path)
|
||||
agent.save_model(save_path+'checkpoint.pth')
|
||||
# 存储reward等相关结果
|
||||
output_path = os.path.dirname(__file__)+"/result/"
|
||||
# 检测是否存在文件夹
|
||||
if not os.path.exists(output_path):
|
||||
os.mkdir(output_path)
|
||||
np.save(output_path+"rewards.npy", rewards)
|
||||
np.save(output_path+"moving_average_rewards.npy", moving_average_rewards)
|
||||
np.save(output_path+"steps.npy", ep_steps)
|
||||
print('Complete!')
|
||||
plot(rewards)
|
||||
plot(moving_average_rewards, ylabel="moving_average_rewards")
|
||||
plot(ep_steps, ylabel="steps_of_each_episode")
|
||||
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
|
||||
writer.add_scalar('steps_of_each_episode',
|
||||
ep_steps[-1], i_episode)
|
||||
writer.close()
|
||||
print('Complete training!')
|
||||
''' 保存模型 '''
|
||||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
agent.save_model(SAVED_MODEL_PATH+'checkpoint.pth')
|
||||
print('model saved!')
|
||||
'''存储reward等相关结果'''
|
||||
save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path=RESULT_PATH)
|
||||
|
||||
|
||||
def eval():
|
||||
cfg = get_args()
|
||||
# if gpu is to be used
|
||||
def eval(cfg, saved_model_path = SAVED_MODEL_PATH):
|
||||
print('start to eval !')
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||||
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要
|
||||
env.seed(1) # 设置env随机种子
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
agent = DQN(n_states=n_states, n_actions=n_actions, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,
|
||||
agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,
|
||||
epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size)
|
||||
import os
|
||||
save_path = os.path.dirname(__file__)+"/saved_model/"
|
||||
if not os.path.exists(save_path):
|
||||
os.mkdir(save_path)
|
||||
agent.load_model(save_path+'checkpoint.pth')
|
||||
agent.load_model(saved_model_path+'checkpoint.pth')
|
||||
rewards = []
|
||||
moving_average_rewards = []
|
||||
ep_steps = []
|
||||
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/eval/" + SEQUENCE
|
||||
writer = SummaryWriter(log_dir)
|
||||
for i_episode in range(1, cfg.eval_eps+1):
|
||||
state = env.reset() # reset环境状态
|
||||
state = env.reset() # reset环境状态
|
||||
ep_reward = 0
|
||||
for i_step in range(1, cfg.eval_steps+1):
|
||||
action = agent.select_action(state) # 根据当前环境state选择action
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||||
action = agent.choose_action(state,train=False) # 根据当前环境state选择action
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||||
ep_reward += reward
|
||||
state = next_state # 跳转到下一个状态
|
||||
state = next_state # 跳转到下一个状态
|
||||
if done:
|
||||
break
|
||||
print('Episode:', i_episode, ' Reward: %i' %
|
||||
int(ep_reward), 'n_steps:', i_step, 'done: ', done,' Explore: %.2f' % agent.epsilon)
|
||||
int(ep_reward), 'n_steps:', i_step, 'done: ', done)
|
||||
|
||||
ep_steps.append(i_step)
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动窗口的reward
|
||||
@@ -135,9 +107,20 @@ def eval():
|
||||
else:
|
||||
moving_average_rewards.append(
|
||||
0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||||
plot(rewards,save_fig=False)
|
||||
plot(moving_average_rewards, ylabel="moving_average_rewards",save_fig=False)
|
||||
plot(ep_steps, ylabel="steps_of_each_episode",save_fig=False)
|
||||
|
||||
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
|
||||
writer.add_scalar('steps_of_each_episode',
|
||||
ep_steps[-1], i_episode)
|
||||
writer.close()
|
||||
'''存储reward等相关结果'''
|
||||
save_results(rewards,moving_average_rewards,ep_steps,tag='eval',result_path=RESULT_PATH)
|
||||
print('Complete evaling!')
|
||||
|
||||
if __name__ == "__main__":
|
||||
# train()
|
||||
eval()
|
||||
cfg = get_args()
|
||||
if cfg.train:
|
||||
train(cfg)
|
||||
eval(cfg)
|
||||
else:
|
||||
model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"
|
||||
eval(cfg,saved_model_path=model_path)
|
||||
@@ -5,7 +5,7 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-10 15:27:16
|
||||
@LastEditor: John
|
||||
@LastEditTime: 2020-06-14 11:36:24
|
||||
LastEditTime: 2020-12-22 12:56:27
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
@@ -15,21 +15,27 @@ import numpy as np
|
||||
class ReplayBuffer:
|
||||
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity
|
||||
self.capacity = capacity # buffer的最大容量
|
||||
self.buffer = []
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
'''以队列的方式将样本填入buffer中
|
||||
'''
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
'''随机采样batch_size个样本
|
||||
'''
|
||||
batch = random.sample(self.buffer, batch_size)
|
||||
state, action, reward, next_state, done = zip(*batch)
|
||||
return state, action, reward, next_state, done
|
||||
|
||||
def __len__(self):
|
||||
'''返回buffer的长度
|
||||
'''
|
||||
return len(self.buffer)
|
||||
|
||||
48
codes/DoubleDQN/params.py
Normal file
@@ -0,0 +1,48 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-12-22 15:22:17
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-12-22 15:26:09
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import datetime
|
||||
import os
|
||||
import argparse
|
||||
|
||||
ALGO_NAME = 'Double DQN'
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
|
||||
|
||||
def get_args():
|
||||
'''模型参数
|
||||
'''
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--train", default=1, type=int) # 1 表示训练,0表示只进行eval
|
||||
parser.add_argument("--gamma", default=0.99,
|
||||
type=float) # q-learning中的gamma
|
||||
parser.add_argument("--epsilon_start", default=0.95,
|
||||
type=float) # 基于贪心选择action对应的参数epsilon
|
||||
parser.add_argument("--epsilon_end", default=0.01, type=float)
|
||||
parser.add_argument("--epsilon_decay", default=500, type=float)
|
||||
parser.add_argument("--policy_lr", default=0.01, type=float)
|
||||
parser.add_argument("--memory_capacity", default=1000,
|
||||
type=int, help="capacity of Replay Memory")
|
||||
|
||||
parser.add_argument("--batch_size", default=32, type=int,
|
||||
help="batch size of memory sampling")
|
||||
parser.add_argument("--train_eps", default=200, type=int) # 训练的最大episode数目
|
||||
parser.add_argument("--train_steps", default=200, type=int)
|
||||
parser.add_argument("--target_update", default=2, type=int,
|
||||
help="when(every default 2 eisodes) to update target net ") # 更新频率
|
||||
|
||||
parser.add_argument("--eval_eps", default=100, type=int) # 训练的最大episode数目
|
||||
parser.add_argument("--eval_steps", default=200,
|
||||
type=int) # 训练每个episode的长度
|
||||
config = parser.parse_args()
|
||||
|
||||
return config
|
||||
48
codes/DoubleDQN/plot.py
Normal file
@@ -0,0 +1,48 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 16:30:09
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-12-22 15:24:31
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import numpy as np
|
||||
import os
|
||||
from params import ALGO_NAME
|
||||
def plot(item,ylabel='rewards_train', save_fig = True):
|
||||
'''plot using searborn to plot
|
||||
'''
|
||||
sns.set()
|
||||
plt.figure()
|
||||
plt.plot(np.arange(len(item)), item)
|
||||
plt.title(ylabel+' of '+ALGO_NAME)
|
||||
plt.ylabel(ylabel)
|
||||
plt.xlabel('episodes')
|
||||
if save_fig:
|
||||
plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png")
|
||||
plt.show()
|
||||
|
||||
|
||||
# plt.show()
|
||||
if __name__ == "__main__":
|
||||
|
||||
output_path = os.path.split(os.path.abspath(__file__))[0]+"/result/"
|
||||
tag = 'train'
|
||||
rewards=np.load(output_path+"rewards_"+tag+".npy", )
|
||||
moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",)
|
||||
steps=np.load(output_path+"steps_"+tag+".npy")
|
||||
plot(rewards)
|
||||
plot(moving_average_rewards,ylabel='moving_average_rewards_'+tag)
|
||||
plot(steps,ylabel='steps_'+tag)
|
||||
tag = 'eval'
|
||||
rewards=np.load(output_path+"rewards_"+tag+".npy", )
|
||||
moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",)
|
||||
steps=np.load(output_path+"steps_"+tag+".npy")
|
||||
plot(rewards,ylabel='rewards_'+tag)
|
||||
plot(moving_average_rewards,ylabel='moving_average_rewards_'+tag)
|
||||
plot(steps,ylabel='steps_'+tag)
|
||||
BIN
codes/DoubleDQN/result/20201222-144524/rewards_eval.npy
Normal file
BIN
codes/DoubleDQN/result/20201222-144524/rewards_train.npy
Normal file
BIN
codes/DoubleDQN/result/20201222-144524/steps_eval.npy
Normal file
BIN
codes/DoubleDQN/result/20201222-144524/steps_train.npy
Normal file
BIN
codes/DoubleDQN/result/DQN20201015-215937/rewards_eval.npy
Normal file
BIN
codes/DoubleDQN/result/DQN20201015-215937/rewards_train.npy
Normal file
BIN
codes/DoubleDQN/result/DQN20201015-215937/steps_eval.npy
Normal file
BIN
codes/DoubleDQN/result/DQN20201015-215937/steps_train.npy
Normal file
BIN
codes/DoubleDQN/result/moving_average_rewards_eval.npy
Normal file
BIN
codes/DoubleDQN/result/moving_average_rewards_eval.png
Normal file
|
After Width: | Height: | Size: 28 KiB |
BIN
codes/DoubleDQN/result/moving_average_rewards_train.npy
Normal file
BIN
codes/DoubleDQN/result/moving_average_rewards_train.png
Normal file
|
After Width: | Height: | Size: 39 KiB |
BIN
codes/DoubleDQN/result/rewards_eval.npy
Normal file
BIN
codes/DoubleDQN/result/rewards_eval.png
Normal file
|
After Width: | Height: | Size: 23 KiB |
BIN
codes/DoubleDQN/result/rewards_train.npy
Normal file
BIN
codes/DoubleDQN/result/rewards_train.png
Normal file
|
After Width: | Height: | Size: 57 KiB |
BIN
codes/DoubleDQN/result/steps_eval.npy
Normal file
BIN
codes/DoubleDQN/result/steps_eval.png
Normal file
|
After Width: | Height: | Size: 22 KiB |
BIN
codes/DoubleDQN/result/steps_train.npy
Normal file
BIN
codes/DoubleDQN/result/steps_train.png
Normal file
|
After Width: | Height: | Size: 56 KiB |
BIN
codes/DoubleDQN/saved_model/20201222-144524/checkpoint.pth
Normal file
BIN
codes/DoubleDQN/saved_model/checkpoint.pth
Normal file
21
codes/DoubleDQN/utils.py
Normal file
@@ -0,0 +1,21 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-10-15 21:28:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-10-15 21:50:30
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
|
||||
def save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path='./result'):
|
||||
if not os.path.exists(result_path): # 检测是否存在文件夹
|
||||
os.mkdir(result_path)
|
||||
np.save(result_path+'rewards_'+tag+'.npy', rewards)
|
||||
np.save(result_path+'moving_average_rewards_'+tag+'.npy', moving_average_rewards)
|
||||
np.save(result_path+'steps_'+tag+'.npy',ep_steps )
|
||||
@@ -1,34 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 16:30:09
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-09-01 22:46:43
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
def plot(item,ylabel='rewards',save_fig = True):
|
||||
sns.set()
|
||||
plt.figure()
|
||||
plt.plot(np.arange(len(item)), item)
|
||||
plt.title(ylabel+' of DQN')
|
||||
plt.ylabel(ylabel)
|
||||
plt.xlabel('episodes')
|
||||
if save_fig:
|
||||
plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png")
|
||||
plt.show()
|
||||
if __name__ == "__main__":
|
||||
|
||||
output_path = os.path.dirname(__file__)+"/result/"
|
||||
rewards=np.load(output_path+"rewards.npy", )
|
||||
moving_average_rewards=np.load(output_path+"moving_average_rewards.npy",)
|
||||
plot(rewards)
|
||||
plot(moving_average_rewards,ylabel='moving_average_rewards')
|
||||
|
Before Width: | Height: | Size: 36 KiB |
|
Before Width: | Height: | Size: 48 KiB |
|
Before Width: | Height: | Size: 54 KiB |