Files
easy-rl/codes/SAC/task0_train.py
johnjim0816 895094a893 update
2021-04-29 14:44:25 +08:00

90 lines
2.7 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-04-29 12:59:22
LastEditor: JiangJi
LastEditTime: 2021-04-29 13:56:56
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import gym
import torch
import datetime
from SAC.env import NormalizedActions
from SAC.agent import SAC
from common.utils import save_results, make_dir
from common.plot import plot_rewards
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
class SACConfig:
def __init__(self) -> None:
self.algo = 'SAC'
self.env = 'Pendulum-v0'
self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # path to save models
self.train_eps = 300
self.train_steps = 500
self.gamma = 0.99
self.mean_lambda=1e-3
self.std_lambda=1e-3
self.z_lambda=0.0
self.soft_tau=1e-2
self.value_lr = 3e-4
self.soft_q_lr = 3e-4
self.policy_lr = 3e-4
self.capacity = 1000000
self.hidden_dim = 256
self.batch_size = 128
self.device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
def train(cfg,env,agent):
rewards = []
ma_rewards = [] # moveing average reward
for i_ep in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
for i_step in range(cfg.train_steps):
action = agent.policy_net.get_action(state)
next_state, reward, done, _ = env.step(action)
agent.memory.push(state, action, reward, next_state, done)
agent.update()
state = next_state
ep_reward += reward
if done:
break
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}")
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
return rewards, ma_rewards
if __name__ == "__main__":
cfg=SACConfig()
env = NormalizedActions(gym.make("Pendulum-v0"))
action_dim = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
agent = SAC(state_dim,action_dim,cfg)
rewards,ma_rewards = train(cfg,env,agent)
make_dir(cfg.result_path,cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)