90 lines
2.7 KiB
Python
90 lines
2.7 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
'''
|
|
Author: JiangJi
|
|
Email: johnjim0816@gmail.com
|
|
Date: 2021-04-29 12:59:22
|
|
LastEditor: JiangJi
|
|
LastEditTime: 2021-04-29 13:56:56
|
|
Discription:
|
|
Environment:
|
|
'''
|
|
|
|
|
|
import sys,os
|
|
curr_path = os.path.dirname(__file__)
|
|
parent_path = os.path.dirname(curr_path)
|
|
sys.path.append(parent_path) # add current terminal path to sys.path
|
|
|
|
|
|
import gym
|
|
import torch
|
|
import datetime
|
|
|
|
from SAC.env import NormalizedActions
|
|
from SAC.agent import SAC
|
|
from common.utils import save_results, make_dir
|
|
from common.plot import plot_rewards
|
|
|
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
|
|
|
class SACConfig:
|
|
def __init__(self) -> None:
|
|
self.algo = 'SAC'
|
|
self.env = 'Pendulum-v0'
|
|
self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # path to save results
|
|
self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # path to save models
|
|
self.train_eps = 300
|
|
self.train_steps = 500
|
|
|
|
self.gamma = 0.99
|
|
self.mean_lambda=1e-3
|
|
self.std_lambda=1e-3
|
|
self.z_lambda=0.0
|
|
self.soft_tau=1e-2
|
|
self.value_lr = 3e-4
|
|
self.soft_q_lr = 3e-4
|
|
self.policy_lr = 3e-4
|
|
self.capacity = 1000000
|
|
self.hidden_dim = 256
|
|
self.batch_size = 128
|
|
self.device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
def train(cfg,env,agent):
|
|
rewards = []
|
|
ma_rewards = [] # moveing average reward
|
|
for i_ep in range(cfg.train_eps):
|
|
state = env.reset()
|
|
ep_reward = 0
|
|
for i_step in range(cfg.train_steps):
|
|
action = agent.policy_net.get_action(state)
|
|
next_state, reward, done, _ = env.step(action)
|
|
agent.memory.push(state, action, reward, next_state, done)
|
|
agent.update()
|
|
state = next_state
|
|
ep_reward += reward
|
|
if done:
|
|
break
|
|
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}")
|
|
rewards.append(ep_reward)
|
|
if ma_rewards:
|
|
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
|
else:
|
|
ma_rewards.append(ep_reward)
|
|
return rewards, ma_rewards
|
|
if __name__ == "__main__":
|
|
cfg=SACConfig()
|
|
env = NormalizedActions(gym.make("Pendulum-v0"))
|
|
action_dim = env.action_space.shape[0]
|
|
state_dim = env.observation_space.shape[0]
|
|
agent = SAC(state_dim,action_dim,cfg)
|
|
rewards,ma_rewards = train(cfg,env,agent)
|
|
make_dir(cfg.result_path,cfg.model_path)
|
|
agent.save(path=cfg.model_path)
|
|
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
|
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
|
|
|
|
|
|
|
|
|
|