113 lines
4.5 KiB
Python
113 lines
4.5 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
@Author: John
|
||
@Email: johnjim0816@gmail.com
|
||
@Date: 2020-06-11 10:01:09
|
||
@LastEditor: John
|
||
LastEditTime: 2021-04-05 11:06:23
|
||
@Discription:
|
||
@Environment: python 3.7.7
|
||
'''
|
||
import sys,os
|
||
curr_path = os.path.dirname(__file__)
|
||
parent_path=os.path.dirname(curr_path)
|
||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||
|
||
import gym
|
||
import torch
|
||
import datetime
|
||
from DQN_cnn.env import get_screen
|
||
from DQN_cnn.agent import DQNcnn
|
||
from common.plot import plot_rewards
|
||
from common.utils import save_results
|
||
|
||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||
SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model
|
||
if not os.path.exists(curr_path+"/saved_model/"):
|
||
os.mkdir(curr_path+"/saved_model/")
|
||
if not os.path.exists(SAVED_MODEL_PATH):
|
||
os.mkdir(SAVED_MODEL_PATH)
|
||
RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards
|
||
if not os.path.exists(curr_path+"/results/"):
|
||
os.mkdir(curr_path+"/results/")
|
||
if not os.path.exists(RESULT_PATH):
|
||
os.mkdir(RESULT_PATH)
|
||
|
||
class DQNcnnConfig:
|
||
def __init__(self) -> None:
|
||
self.algo = "DQN_cnn" # name of algo
|
||
self.gamma = 0.99
|
||
self.epsilon_start = 0.95 # e-greedy策略的初始epsilon
|
||
self.epsilon_end = 0.05
|
||
self.epsilon_decay = 200
|
||
self.lr = 0.01 # leanring rate
|
||
self.memory_capacity = 10000 # Replay Memory容量
|
||
self.batch_size = 64
|
||
self.train_eps = 250 # 训练的episode数目
|
||
self.train_steps = 200 # 训练每个episode的最大长度
|
||
self.target_update = 4 # target net的更新频率
|
||
self.eval_eps = 20 # 测试的episode数目
|
||
self.eval_steps = 200 # 测试每个episode的最大长度
|
||
self.hidden_dim = 128 # 神经网络隐藏层维度
|
||
self.device = torch.device(
|
||
"cuda" if torch.cuda.is_available() else "cpu") # if gpu is to be used
|
||
|
||
def train(cfg, env, agent):
|
||
rewards = []
|
||
ma_rewards = []
|
||
for i_episode in range(cfg.train_eps):
|
||
# Initialize the environment and state
|
||
env.reset()
|
||
last_screen = get_screen(env, cfg.device)
|
||
current_screen = get_screen(env, cfg.device)
|
||
state = current_screen - last_screen
|
||
ep_reward = 0
|
||
for i_step in range(cfg.train_steps+1):
|
||
# Select and perform an action
|
||
action = agent.choose_action(state)
|
||
_, reward, done, _ = env.step(action.item())
|
||
ep_reward += reward
|
||
reward = torch.tensor([reward], device=cfg.device)
|
||
# Observe new state
|
||
last_screen = current_screen
|
||
current_screen = get_screen(env, cfg.device)
|
||
if done:
|
||
break
|
||
state_ = current_screen - last_screen
|
||
# Store the transition in memory
|
||
agent.memory.push(state, action, state_, reward)
|
||
# Move to the next state
|
||
state = state_
|
||
# Perform one step of the optimization (on the target network)
|
||
agent.update()
|
||
# Update the target network, copying all weights and biases in DQN
|
||
if i_episode % cfg.target_update == 0:
|
||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||
print('Episode:{}/{}, Reward:{}, Steps:{}, Explore:{:.2f}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,i_step+1,agent.epsilon,done))
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
return rewards,ma_rewards
|
||
|
||
|
||
if __name__ == "__main__":
|
||
cfg = DQNcnnConfig()
|
||
# Get screen size so that we can initialize layers correctly based on shape
|
||
# returned from AI gym. Typical dimensions at this point are close to 3x40x90
|
||
# which is the result of a clamped and down-scaled render buffer in get_screen(env,device)
|
||
# 因为这里环境的state需要从默认的向量改为图像,所以要unwrapped更改state
|
||
env = gym.make('CartPole-v0').unwrapped
|
||
env.reset()
|
||
init_screen = get_screen(env, cfg.device)
|
||
_, _, screen_height, screen_width = init_screen.shape
|
||
# Get number of actions from gym action space
|
||
action_dim = env.action_space.n
|
||
agent = DQNcnn(screen_height, screen_width,
|
||
action_dim, cfg)
|
||
rewards,ma_rewards = train(cfg,env,agent)
|
||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
|