Files
easy-rl/codes/DQN_cnn/env.py
JohnJim0816 2df8d965d2 add DQN_cnn
2021-03-23 21:23:43 +08:00

66 lines
2.3 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 10:02:35
@LastEditor: John
@LastEditTime: 2020-06-11 16:57:34
@Discription:
@Environment: python 3.7.7
'''
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
resize = T.Compose([T.ToPILImage(),
T.Resize(40, interpolation=Image.CUBIC),
T.ToTensor()])
def get_cart_location(env,screen_width):
world_width = env.x_threshold * 2
scale = screen_width / world_width
return int(env.state[0] * scale + screen_width / 2.0) # MIDDLE OF CART
def get_screen(env,device):
# Returned screen requested by gym is 400x600x3, but is sometimes larger
# such as 800x1200x3. Transpose it into torch order (CHW).
screen = env.render(mode='rgb_array').transpose((2, 0, 1))
# Cart is in the lower half, so strip off the top and bottom of the screen
_, screen_height, screen_width = screen.shape
screen = screen[:, int(screen_height*0.4):int(screen_height * 0.8)]
view_width = int(screen_width * 0.6)
cart_location = get_cart_location(env,screen_width)
if cart_location < view_width // 2:
slice_range = slice(view_width)
elif cart_location > (screen_width - view_width // 2):
slice_range = slice(-view_width, None)
else:
slice_range = slice(cart_location - view_width // 2,
cart_location + view_width // 2)
# Strip off the edges, so that we have a square image centered on a cart
screen = screen[:, :, slice_range]
# Convert to float, rescale, convert to torch tensor
# (this doesn't require a copy)
screen = np.ascontiguousarray(screen, dtype=np.float32) / 255
screen = torch.from_numpy(screen)
# Resize, and add a batch dimension (BCHW)
return resize(screen).unsqueeze(0).to(device)
if __name__ == "__main__":
import gym
env = gym.make('CartPole-v0').unwrapped
# if gpu is to be used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
env.reset()
import matplotlib.pyplot as plt
plt.figure()
plt.imshow(get_screen(env,device).cpu().squeeze(0).permute(1, 2, 0).numpy(),
interpolation='none')
plt.title('Example extracted screen')
plt.show()