143 lines
5.0 KiB
Python
143 lines
5.0 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
'''
|
|
Author: JiangJi
|
|
Email: johnjim0816@gmail.com
|
|
Date: 2021-04-29 12:59:22
|
|
LastEditor: JiangJi
|
|
LastEditTime: 2021-12-22 16:27:13
|
|
Discription:
|
|
Environment:
|
|
'''
|
|
import sys,os
|
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
|
parent_path = os.path.dirname(curr_path) # 父路径
|
|
sys.path.append(parent_path) # 添加路径到系统路径
|
|
|
|
import gym
|
|
import torch
|
|
import datetime
|
|
|
|
from SoftActorCritic.env_wrapper import NormalizedActions
|
|
from SoftActorCritic.sac import SAC
|
|
from common.utils import save_results, make_dir
|
|
from common.utils import plot_rewards
|
|
|
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
|
algo_name = 'SAC' # 算法名称
|
|
env_name = 'Pendulum-v1' # 环境名称
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
|
|
|
class SACConfig:
|
|
def __init__(self) -> None:
|
|
self.algo_name = algo_name
|
|
self.env_name = env_name # 环境名称
|
|
self.device= device
|
|
self.train_eps = 300
|
|
self.test_eps = 20
|
|
self.max_steps = 500 # 每回合的最大步数
|
|
self.gamma = 0.99
|
|
self.mean_lambda=1e-3
|
|
self.std_lambda=1e-3
|
|
self.z_lambda=0.0
|
|
self.soft_tau=1e-2
|
|
self.value_lr = 3e-4
|
|
self.soft_q_lr = 3e-4
|
|
self.policy_lr = 3e-4
|
|
self.capacity = 1000000
|
|
self.hidden_dim = 256
|
|
self.batch_size = 128
|
|
|
|
|
|
class PlotConfig:
|
|
def __init__(self) -> None:
|
|
self.algo_name = algo_name # 算法名称
|
|
self.env_name = env_name # 环境名称
|
|
self.device= device
|
|
self.result_path = curr_path + "/outputs/" + self.env_name + \
|
|
'/' + curr_time + '/results/' # 保存结果的路径
|
|
self.model_path = curr_path + "/outputs/" + self.env_name + \
|
|
'/' + curr_time + '/models/' # 保存模型的路径
|
|
self.save = True # 是否保存图片
|
|
|
|
def env_agent_config(cfg,seed=1):
|
|
env = NormalizedActions(gym.make(cfg.env_name))
|
|
env.seed(seed)
|
|
action_dim = env.action_space.shape[0]
|
|
state_dim = env.observation_space.shape[0]
|
|
agent = SAC(state_dim,action_dim,cfg)
|
|
return env,agent
|
|
|
|
def train(cfg,env,agent):
|
|
print('开始训练!')
|
|
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
|
rewards = [] # 记录所有回合的奖励
|
|
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
|
for i_ep in range(cfg.train_eps):
|
|
ep_reward = 0 # 记录一回合内的奖励
|
|
state = env.reset() # 重置环境,返回初始状态
|
|
for i_step in range(cfg.max_steps):
|
|
action = agent.policy_net.get_action(state)
|
|
next_state, reward, done, _ = env.step(action)
|
|
agent.memory.push(state, action, reward, next_state, done)
|
|
agent.update()
|
|
state = next_state
|
|
ep_reward += reward
|
|
if done:
|
|
break
|
|
rewards.append(ep_reward)
|
|
if ma_rewards:
|
|
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
|
else:
|
|
ma_rewards.append(ep_reward)
|
|
if (i_ep+1)%10 == 0:
|
|
print(f'回合:{i_ep+1}/{cfg.train_eps}, 奖励:{ep_reward:.3f}')
|
|
print('完成训练!')
|
|
return rewards, ma_rewards
|
|
|
|
def test(cfg,env,agent):
|
|
print('开始测试!')
|
|
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
|
rewards = [] # 记录所有回合的奖励
|
|
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
|
for i_ep in range(cfg.test_eps):
|
|
state = env.reset()
|
|
ep_reward = 0
|
|
for i_step in range(cfg.max_steps):
|
|
action = agent.policy_net.get_action(state)
|
|
next_state, reward, done, _ = env.step(action)
|
|
state = next_state
|
|
ep_reward += reward
|
|
if done:
|
|
break
|
|
rewards.append(ep_reward)
|
|
if ma_rewards:
|
|
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
|
else:
|
|
ma_rewards.append(ep_reward)
|
|
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
|
|
print('完成测试!')
|
|
return rewards, ma_rewards
|
|
|
|
if __name__ == "__main__":
|
|
cfg=SACConfig()
|
|
plot_cfg = PlotConfig()
|
|
# 训练
|
|
env, agent = env_agent_config(cfg, seed=1)
|
|
rewards, ma_rewards = train(cfg, env, agent)
|
|
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
|
agent.save(path=plot_cfg.model_path) # 保存模型
|
|
save_results(rewards, ma_rewards, tag='train',
|
|
path=plot_cfg.result_path) # 保存结果
|
|
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
|
|
# 测试
|
|
env, agent = env_agent_config(cfg, seed=10)
|
|
agent.load(path=plot_cfg.model_path) # 导入模型
|
|
rewards, ma_rewards = test(cfg, env, agent)
|
|
save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果
|
|
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果
|
|
|
|
|
|
|
|
|