111 lines
4.5 KiB
Python
111 lines
4.5 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
'''
|
|
Author: John
|
|
Email: johnjim0816@gmail.com
|
|
Date: 2021-03-11 14:26:44
|
|
LastEditor: John
|
|
LastEditTime: 2022-08-15 18:12:13
|
|
Discription:
|
|
Environment:
|
|
'''
|
|
import sys,os
|
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
|
parent_path = os.path.dirname(curr_path) # 父路径
|
|
sys.path.append(parent_path) # 添加路径到系统路径
|
|
|
|
import datetime
|
|
import argparse
|
|
from common.utils import save_results,save_args,plot_rewards
|
|
|
|
from MonteCarlo.agent import FisrtVisitMC
|
|
from envs.racetrack import RacetrackEnv
|
|
|
|
curr_time = datetime.datetime.now().strftime(
|
|
"%Y%m%d-%H%M%S") # obtain current time
|
|
|
|
def get_args():
|
|
""" 超参数
|
|
"""
|
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
|
parser = argparse.ArgumentParser(description="hyperparameters")
|
|
parser.add_argument('--algo_name',default='First-Visit MC',type=str,help="name of algorithm")
|
|
parser.add_argument('--env_name',default='Racetrack',type=str,help="name of environment")
|
|
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
|
|
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
|
parser.add_argument('--gamma',default=0.9,type=float,help="discounted factor")
|
|
parser.add_argument('--epsilon',default=0.15,type=float,help="the probability to select a random action")
|
|
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
|
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
|
'/' + curr_time + '/results/' )
|
|
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
|
'/' + curr_time + '/models/' )
|
|
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
|
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
def env_agent_config(cfg,seed=1):
|
|
env = RacetrackEnv()
|
|
n_actions = env.action_space.n
|
|
agent = FisrtVisitMC(n_actions, cfg)
|
|
return env,agent
|
|
|
|
def train(cfg, env, agent):
|
|
print("开始训练!")
|
|
print(f"环境:{cfg.env_name},算法:{cfg.algo_name},设备:{cfg.device}")
|
|
rewards = []
|
|
for i_ep in range(cfg.train_eps):
|
|
state = env.reset()
|
|
ep_reward = 0
|
|
one_ep_transition = []
|
|
while True:
|
|
action = agent.sample(state)
|
|
next_state, reward, done = env.step(action)
|
|
ep_reward += reward
|
|
one_ep_transition.append((state, action, reward))
|
|
state = next_state
|
|
if done:
|
|
break
|
|
rewards.append(ep_reward)
|
|
agent.update(one_ep_transition)
|
|
if (i_ep+1) % 10 == 0:
|
|
print(f"Episode:{i_ep+1}/{cfg.train_eps}: Reward:{ep_reward}")
|
|
print("完成训练")
|
|
return {'rewards':rewards}
|
|
|
|
def test(cfg, env, agent):
|
|
print("开始测试!")
|
|
print(f"环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}")
|
|
rewards = []
|
|
for i_ep in range(cfg.test_eps):
|
|
state = env.reset()
|
|
ep_reward = 0
|
|
while True:
|
|
action = agent.predict(state)
|
|
next_state, reward, done = env.step(action)
|
|
ep_reward += reward
|
|
state = next_state
|
|
if done:
|
|
break
|
|
rewards.append(ep_reward)
|
|
print(f'回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.2f}')
|
|
return {'rewards':rewards}
|
|
|
|
if __name__ == "__main__":
|
|
cfg = get_args()
|
|
# 训练
|
|
env, agent = env_agent_config(cfg)
|
|
res_dic = train(cfg, env, agent)
|
|
save_args(cfg,path = cfg.result_path) # 保存参数到模型路径上
|
|
agent.save(path = cfg.model_path) # 保存模型
|
|
save_results(res_dic, tag = 'train', path = cfg.result_path)
|
|
plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "train")
|
|
# 测试
|
|
env, agent = env_agent_config(cfg) # 也可以不加,加这一行的是为了避免训练之后环境可能会出现问题,因此新建一个环境用于测试
|
|
agent.load(path = cfg.model_path) # 导入模型
|
|
res_dic = test(cfg, env, agent)
|
|
save_results(res_dic, tag='test',
|
|
path = cfg.result_path) # 保存结果
|
|
plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "test") # 画出结果
|