#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-11 14:26:44 LastEditor: John LastEditTime: 2022-08-15 18:12:13 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径 import datetime import argparse from common.utils import save_results,save_args,plot_rewards from MonteCarlo.agent import FisrtVisitMC from envs.racetrack import RacetrackEnv curr_time = datetime.datetime.now().strftime( "%Y%m%d-%H%M%S") # obtain current time def get_args(): """ 超参数 """ curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 parser = argparse.ArgumentParser(description="hyperparameters") parser.add_argument('--algo_name',default='First-Visit MC',type=str,help="name of algorithm") parser.add_argument('--env_name',default='Racetrack',type=str,help="name of environment") parser.add_argument('--train_eps',default=200,type=int,help="episodes of training") parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") parser.add_argument('--gamma',default=0.9,type=float,help="discounted factor") parser.add_argument('--epsilon',default=0.15,type=float,help="the probability to select a random action") parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda") parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/results/' ) parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/models/' ) parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not") parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not") args = parser.parse_args() return args def env_agent_config(cfg,seed=1): env = RacetrackEnv() n_actions = env.action_space.n agent = FisrtVisitMC(n_actions, cfg) return env,agent def train(cfg, env, agent): print("开始训练!") print(f"环境:{cfg.env_name},算法:{cfg.algo_name},设备:{cfg.device}") rewards = [] for i_ep in range(cfg.train_eps): state = env.reset() ep_reward = 0 one_ep_transition = [] while True: action = agent.sample(state) next_state, reward, done = env.step(action) ep_reward += reward one_ep_transition.append((state, action, reward)) state = next_state if done: break rewards.append(ep_reward) agent.update(one_ep_transition) if (i_ep+1) % 10 == 0: print(f"Episode:{i_ep+1}/{cfg.train_eps}: Reward:{ep_reward}") print("完成训练") return {'rewards':rewards} def test(cfg, env, agent): print("开始测试!") print(f"环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}") rewards = [] for i_ep in range(cfg.test_eps): state = env.reset() ep_reward = 0 while True: action = agent.predict(state) next_state, reward, done = env.step(action) ep_reward += reward state = next_state if done: break rewards.append(ep_reward) print(f'回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.2f}') return {'rewards':rewards} if __name__ == "__main__": cfg = get_args() # 训练 env, agent = env_agent_config(cfg) res_dic = train(cfg, env, agent) save_args(cfg,path = cfg.result_path) # 保存参数到模型路径上 agent.save(path = cfg.model_path) # 保存模型 save_results(res_dic, tag = 'train', path = cfg.result_path) plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "train") # 测试 env, agent = env_agent_config(cfg) # 也可以不加,加这一行的是为了避免训练之后环境可能会出现问题,因此新建一个环境用于测试 agent.load(path = cfg.model_path) # 导入模型 res_dic = test(cfg, env, agent) save_results(res_dic, tag='test', path = cfg.result_path) # 保存结果 plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "test") # 画出结果