121 lines
4.7 KiB
Python
121 lines
4.7 KiB
Python
def train(cfg,env,agent):
|
|
print('开始训练!')
|
|
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
|
rewards = [] # 记录所有回合的奖励
|
|
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
|
steps = 0
|
|
for i_ep in range(cfg.train_eps):
|
|
state = env.reset()
|
|
done = False
|
|
ep_reward = 0
|
|
while not done:
|
|
action, prob, val = agent.choose_action(state)
|
|
state_, reward, done, _ = env.step(action)
|
|
steps += 1
|
|
ep_reward += reward
|
|
agent.memory.push(state, action, prob, val, reward, done)
|
|
if steps % cfg.update_fre == 0:
|
|
agent.update()
|
|
state = state_
|
|
rewards.append(ep_reward)
|
|
if ma_rewards:
|
|
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
|
else:
|
|
ma_rewards.append(ep_reward)
|
|
if (i_ep+1)%10 == 0:
|
|
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}")
|
|
print('完成训练!')
|
|
return rewards,ma_rewards
|
|
|
|
def eval(cfg,env,agent):
|
|
print('开始测试!')
|
|
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
|
rewards = [] # 记录所有回合的奖励
|
|
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
|
for i_ep in range(cfg.test_eps):
|
|
state = env.reset()
|
|
done = False
|
|
ep_reward = 0
|
|
while not done:
|
|
action, prob, val = agent.choose_action(state)
|
|
state_, reward, done, _ = env.step(action)
|
|
ep_reward += reward
|
|
state = state_
|
|
rewards.append(ep_reward)
|
|
if ma_rewards:
|
|
ma_rewards.append(
|
|
0.9*ma_rewards[-1]+0.1*ep_reward)
|
|
else:
|
|
ma_rewards.append(ep_reward)
|
|
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.test_eps, ep_reward))
|
|
print('完成训练!')
|
|
return rewards,ma_rewards
|
|
|
|
if __name__ == '__main__':
|
|
import sys,os
|
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
|
parent_path = os.path.dirname(curr_path) # 父路径
|
|
sys.path.append(parent_path) # 添加路径到系统路径
|
|
|
|
import gym
|
|
import torch
|
|
import datetime
|
|
from common.plot import plot_rewards
|
|
from common.utils import save_results,make_dir
|
|
from PPO.agent import PPO
|
|
from PPO.train import train
|
|
|
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
|
|
|
class PPOConfig:
|
|
def __init__(self) -> None:
|
|
self.algo = "DQN" # 算法名称
|
|
self.env_name = 'CartPole-v0' # 环境名称
|
|
self.continuous = False # 环境是否为连续动作
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
|
self.train_eps = 200 # 训练的回合数
|
|
self.test_eps = 20 # 测试的回合数
|
|
self.batch_size = 5
|
|
self.gamma=0.99
|
|
self.n_epochs = 4
|
|
self.actor_lr = 0.0003
|
|
self.critic_lr = 0.0003
|
|
self.gae_lambda=0.95
|
|
self.policy_clip=0.2
|
|
self.hidden_dim = 256
|
|
self.update_fre = 20 # frequency of agent update
|
|
|
|
class PlotConfig:
|
|
def __init__(self) -> None:
|
|
self.algo = "DQN" # 算法名称
|
|
self.env_name = 'CartPole-v0' # 环境名称
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
|
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
|
'/'+curr_time+'/results/' # 保存结果的路径
|
|
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
|
'/'+curr_time+'/models/' # 保存模型的路径
|
|
self.save = True # 是否保存图片
|
|
|
|
def env_agent_config(cfg,seed=1):
|
|
env = gym.make(cfg.env_name)
|
|
env.seed(seed)
|
|
n_states = env.observation_space.shape[0]
|
|
n_actions = env.action_space.n
|
|
agent = PPO(n_states,n_actions,cfg)
|
|
return env,agent
|
|
|
|
cfg = PPOConfig()
|
|
plot_cfg = PlotConfig()
|
|
# 训练
|
|
env,agent = env_agent_config(cfg,seed=1)
|
|
rewards, ma_rewards = train(cfg, env, agent)
|
|
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
|
agent.save(path=plot_cfg.model_path)
|
|
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path)
|
|
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train")
|
|
# 测试
|
|
env,agent = env_agent_config(cfg,seed=10)
|
|
agent.load(path=plot_cfg.model_path)
|
|
rewards,ma_rewards = eval(cfg,env,agent)
|
|
save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path)
|
|
plot_rewards(rewards,ma_rewards,plot_cfg,tag="eval") |