39 lines
1.7 KiB
Markdown
39 lines
1.7 KiB
Markdown
# 纸质版勘误表
|
||
|
||
如何使用勘误?首先找到你的书的印次,接下来对着下表索引印次,该印次之后所有的勘误都是你的书中所要注意的勘误,印次前的所有勘误在当印次和之后印次均已印刷修正。
|
||
|
||
## 第1版第1次印刷(2022.03)
|
||
|
||
* 47页,2.3.5节的第3行:称为备份图(backup diagram) → 称为备份图(backup diagram)或回溯图
|
||
* 76页,式(3.1) 中 $G$ 和 $r$ 后面的数字改为下标,即
|
||
|
||
$$
|
||
\begin{array}{l}
|
||
G_{13}=0 \\
|
||
G_{12}=r_{13}+\gamma G_{13}=-1+0.6 \times 0=-1 \\
|
||
G_{11}=r_{12}+\gamma G_{12}=-1+0.6 \times(-1)=-1.6 \\
|
||
G_{10}=r_{11}+\gamma G_{11}=-1+0.6 \times(-1.6)=-1.96 \\
|
||
G_9=r_{10}+\gamma G_{10}=-1+0.6 \times(-1.96)=-2.176 \approx-2.18 \\
|
||
G_8=r_9+\gamma G_9=-1+0.6 \times(-2.176)=-2.3056 \approx-2.3
|
||
\end{array}
|
||
$$
|
||
|
||
* 149页,式(6.15) 改为
|
||
|
||
$$
|
||
\begin{aligned}
|
||
V^{\pi}(s) &\le Q^{\pi}(s,\pi'(s)) \\
|
||
&=E\left[r_{t}+V^{\pi}\left(s_{t+1}\right) | s_{t}=s, a_{t}=\pi^{\prime}\left(s_{t}\right)\right]\\
|
||
&\le E\left[r_{t}+Q^{\pi}\left(s_{t+1}, \pi^{\prime}\left(s_{t+1}\right)\right) | s_{t}=s, a_{t}=\pi^{\prime}\left(s_{t}\right)\right] \\
|
||
&=E\left[r_{t}+r_{t+1}+V^{\pi}\left(s_{t+2}\right) |s_{t}=s, a_{t}=\pi^{\prime}\left(s_{t}\right)\right] \\
|
||
& \le E\left[r_{t}+r_{t+1}+Q^{\pi}\left(s_{t+2},\pi'(s_{t+2}\right) | s_{t}=s, a_{t}=\pi^{\prime}\left(s_{t}\right)\right] \\
|
||
& = E\left[r_{t}+r_{t+1}+r_{t+2}+V^{\pi}\left(s_{t+3}\right) |s_{t}=s, a_{t}=\pi^{\prime}\left(s_{t}\right)\right] \\
|
||
& \le \cdots\\
|
||
& \le E\left[r_{t}+r_{t+1}+r_{t+2}+\cdots | s_{t}=s, a_{t}=\pi^{\prime}\left(s_{t}\right)\right] \\
|
||
& = V^{\pi'}(s)
|
||
\end{aligned}
|
||
$$
|
||
|
||
* 229页,第2行:很强的序列 → 很长的序列
|
||
|
||
|