Files
easy-rl/codes/README_en.md
johnjim0816 895094a893 update
2021-04-29 14:44:25 +08:00

55 lines
3.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
[Eng](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README_en.md)|[中文](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README.md)
## Introduction
This repo is used to learn basic RL algorithms, we will make it **detailed comment** and **clear structure** as much as possible:
The code structure mainly contains several scripts as following
* ```model.py``` basic network model of RL, like MLP, CNN
* ```memory.py``` Replay Buffer
* ```plot.py``` use seaborn to plot rewards curvesaved in folder ``` result```.
* ```env.py``` to custom or normalize environments
* ```agent.py``` core algorithms, include a python Class with functions(choose action, update)
* ```main.py``` main function
Note that ```model.py```,```memory.py```,```plot.py``` shall be utilized in different algorithmsthus they are put into ```common``` folder。
## Runnig Environment
python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.18.0
## Usage
运行带有```train```的py文件或ipynb文件进行训练如果前面带有```task```如```task0_train.py```表示对task0任务训练
类似的带有```eval```即为测试。
run python scripts or jupyter notebook file with ```train``` to train the agent, if there is a ```task``` like ```task0_train.py```, it means to train with task 0.
similar to file with ```eval```, which means to evaluate the agent.
## Schedule
| Name | Related materials | Used Envs | Notes |
| :--------------------------------------: | :----------------------------------------------------------: | ------------------------------------- | :---: |
| [On-Policy First-Visit MC](./MonteCarlo) | | [Racetrack](./envs/racetrack_env.md) | |
| [Q-Learning](./QLearning) | | [CliffWalking-v0](./envs/gym_info.md) | |
| [Sarsa](./Sarsa) | | [Racetrack](./envs/racetrack_env.md) | |
| [DQN](./DQN) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf),[Nature DQN Paper](https://www.nature.com/articles/nature14236) | [CartPole-v0](./envs/gym_info.md) | |
| [DQN-cnn](./DQN_cnn) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
| [DoubleDQN](./DoubleDQN) | | [CartPole-v0](./envs/gym_info.md) | |
| [Hierarchical DQN](HierarchicalDQN) | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | [CartPole-v0](./envs/gym_info.md) | |
| [PolicyGradient](./PolicyGradient) | | [CartPole-v0](./envs/gym_info.md) | |
| [A2C](./A2C) | [A3C Paper](https://arxiv.org/abs/1602.01783) | [CartPole-v0](./envs/gym_info.md) | |
| [SAC](./SAC) | [SAC Paper](https://arxiv.org/abs/1801.01290) | | |
| [PPO](./PPO) | [PPO paper](https://arxiv.org/abs/1707.06347) | [CartPole-v0](./envs/gym_info.md) | |
| [DDPG](./DDPG) | [DDPG Paper](https://arxiv.org/abs/1509.02971) | [Pendulum-v0](./envs/gym_info.md) | |
| [TD3](./TD3) | [TD3 Paper](https://arxiv.org/abs/1802.09477) | HalfCheetah-v2 | |
## Refs
[RL-Adventure-2](https://github.com/higgsfield/RL-Adventure-2)
[RL-Adventure](https://github.com/higgsfield/RL-Adventure)