Files
easy-rl/projects/codes/PPO/task0.py
2022-11-06 12:15:36 +08:00

159 lines
6.3 KiB
Python

import sys,os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
parent_path = os.path.dirname(curr_path) # parent path
sys.path.append(parent_path) # add path to system path
import gym
import torch
import datetime
import numpy as np
import argparse
import torch.nn as nn
from common.utils import all_seed,merge_class_attrs
from common.models import ActorSoftmax, Critic
from common.memories import PGReplay
from common.launcher import Launcher
from envs.register import register_env
from ppo2 import PPO
from config,config import GeneralConfigPPO,AlgoConfigPPO
class PPOMemory:
def __init__(self, batch_size):
self.states = []
self.probs = []
self.vals = []
self.actions = []
self.rewards = []
self.terminateds = []
self.batch_size = batch_size
def sample(self):
batch_step = np.arange(0, len(self.states), self.batch_size)
indices = np.arange(len(self.states), dtype=np.int64)
np.random.shuffle(indices)
batches = [indices[i:i+self.batch_size] for i in batch_step]
return np.array(self.states),np.array(self.actions),np.array(self.probs),\
np.array(self.vals),np.array(self.rewards),np.array(self.terminateds),batches
def push(self, state, action, probs, vals, reward, terminated):
self.states.append(state)
self.actions.append(action)
self.probs.append(probs)
self.vals.append(vals)
self.rewards.append(reward)
self.terminateds.append(terminated)
def clear(self):
self.states = []
self.probs = []
self.actions = []
self.rewards = []
self.terminateds = []
self.vals = []
class Main(Launcher):
def __init__(self) -> None:
super().__init__()
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigPPO())
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigPPO())
def env_agent_config(self,cfg,logger):
''' create env and agent
'''
register_env(cfg.env_name)
env = gym.make(cfg.env_name,new_step_api=False) # create env
if cfg.seed !=0: # set random seed
all_seed(env,seed=cfg.seed)
try: # state dimension
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
except AttributeError:
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
n_actions = env.action_space.n # action dimension
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
# update to cfg paramters
setattr(cfg, 'n_states', n_states)
setattr(cfg, 'n_actions', n_actions)
models = {'Actor':ActorSoftmax(n_states,n_actions, hidden_dim = cfg.actor_hidden_dim),'Critic':Critic(n_states,1,hidden_dim=cfg.critic_hidden_dim)}
memory = PGReplay # replay buffer
agent = PPO(models,memory,cfg) # create agent
return env, agent
def train_one_episode(self, env, agent, cfg):
ep_reward = 0 # reward per episode
ep_step = 0 # step per episode
state = env.reset()
for _ in range(cfg.max_steps):
action, prob, val = agent.sample_action(state)
next_state, reward, terminated, _ = env.step(action)
ep_reward += reward
ep_step += 1
agent.memory.push((state, action, prob, val, reward, terminated))
if ep_step % cfg['update_fre'] == 0:
agent.update()
state = next_state
if terminated:
break
return agent, ep_reward, ep_step
def test_one_episode(self, env, agent, cfg):
ep_reward = 0 # reward per episode
ep_step = 0 # step per episode
state = env.reset()
for _ in range(cfg.max_steps):
action, prob, val = agent.sample_action(state)
next_state, reward, terminated, _ = env.step(action)
ep_reward += reward
ep_step += 1
state = next_state
if terminated:
break
return agent, ep_reward, ep_step
def train(self,cfg,env,agent):
''' train agent
'''
print("Start training!")
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
rewards = [] # record rewards for all episodes
steps = 0
for i_ep in range(cfg['train_eps']):
state = env.reset()
ep_reward = 0
while True:
action, prob, val = agent.sample_action(state)
next_state, reward, terminated, _ = env.step(action)
steps += 1
ep_reward += reward
agent.memory.push(state, action, prob, val, reward, terminated)
if steps % cfg['update_fre'] == 0:
agent.update()
state = next_state
if terminated:
break
rewards.append(ep_reward)
if (i_ep+1)%10==0:
print(f"Episode: {i_ep+1}/{cfg['train_eps']}, Reward: {ep_reward:.2f}")
print("Finish training!")
return {'episodes':range(len(rewards)),'rewards':rewards}
def test(self,cfg,env,agent):
''' test agent
'''
print("Start testing!")
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
rewards = [] # record rewards for all episodes
for i_ep in range(cfg['test_eps']):
state = env.reset()
ep_reward = 0
while True:
action, prob, val = agent.predict_action(state)
next_state, reward, terminated, _ = env.step(action)
ep_reward += reward
state = next_state
if terminated:
break
rewards.append(ep_reward)
print(f"Episode: {i_ep+1}/{cfg['test_eps']}, Reward: {ep_reward:.2f}")
print("Finish testing!")
return {'episodes':range(len(rewards)),'rewards':rewards}
if __name__ == "__main__":
main = Main()
main.run()