107 lines
4.9 KiB
Python
107 lines
4.9 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
@Author: John
|
||
@Email: johnjim0816@gmail.com
|
||
@Date: 2020-06-12 00:50:49
|
||
@LastEditor: John
|
||
LastEditTime: 2022-08-29 23:34:20
|
||
@Discription:
|
||
@Environment: python 3.7.7
|
||
'''
|
||
'''off-policy
|
||
'''
|
||
|
||
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.optim as optim
|
||
import torch.nn.functional as F
|
||
import random
|
||
import math
|
||
import numpy as np
|
||
class DoubleDQN:
|
||
def __init__(self,models, memories, cfg):
|
||
self.n_actions = cfg['n_actions']
|
||
self.device = torch.device(cfg['device'])
|
||
self.gamma = cfg['gamma']
|
||
## e-greedy parameters
|
||
self.sample_count = 0 # sample count for epsilon decay
|
||
self.epsilon_start = cfg['epsilon_start']
|
||
self.epsilon_end = cfg['epsilon_end']
|
||
self.epsilon_decay = cfg['epsilon_decay']
|
||
self.batch_size = cfg['batch_size']
|
||
self.policy_net = models['Qnet'].to(self.device)
|
||
self.target_net = models['Qnet'].to(self.device)
|
||
# target_net copy from policy_net
|
||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||
target_param.data.copy_(param.data)
|
||
# self.target_net.eval() # donnot use BatchNormalization or Dropout
|
||
# the difference between parameters() and state_dict() is that parameters() require_grad=True
|
||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg['lr'])
|
||
self.memory = memories['Memory']
|
||
self.update_flag = False
|
||
|
||
def sample_action(self, state):
|
||
''' sample action
|
||
'''
|
||
self.sample_count += 1
|
||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||
if random.random() > self.epsilon:
|
||
with torch.no_grad():
|
||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0)
|
||
q_value = self.policy_net(state)
|
||
action = q_value.max(1)[1].item()
|
||
else:
|
||
action = random.randrange(self.n_actions)
|
||
return action
|
||
def predict_action(self, state):
|
||
''' predict action
|
||
'''
|
||
with torch.no_grad():
|
||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0)
|
||
q_value = self.policy_net(state)
|
||
action = q_value.max(1)[1].item()
|
||
return action
|
||
def update(self):
|
||
if len(self.memory) < self.batch_size: # when transitions in memory donot meet a batch, not update
|
||
return
|
||
else:
|
||
if not self.update_flag:
|
||
print("Begin to update!")
|
||
self.update_flag = True
|
||
# sample a batch of transitions from replay buffer
|
||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size)
|
||
# convert to tensor
|
||
state_batch = torch.tensor(np.array(state_batch), device=self.device, dtype=torch.float)
|
||
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1) # shape(batchsize,1)
|
||
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float).unsqueeze(1) # shape(batchsize,1)
|
||
next_state_batch = torch.tensor(np.array(next_state_batch), device=self.device, dtype=torch.float)
|
||
done_batch = torch.tensor(np.float32(done_batch), device=self.device).unsqueeze(1) # shape(batchsize,1)
|
||
# compute current Q(s_t|a=a_t)
|
||
q_value_batch = self.policy_net(state_batch).gather(dim=1, index=action_batch) # shape(batchsize,1),requires_grad=True
|
||
next_q_value_batch = self.policy_net(next_state_batch)
|
||
'''the following is the way of computing Double DQN expected_q_value,a bit different from Nature DQN'''
|
||
next_target_value_batch = self.target_net(next_state_batch)
|
||
# choose action a from Q(s_t‘, a), next_target_values obtain next_q_value,which is Q’(s_t|a=argmax Q(s_t‘, a))
|
||
next_target_q_value_batch = next_target_value_batch.gather(1, torch.max(next_q_value_batch, 1)[1].unsqueeze(1)) # shape(batchsize,1)
|
||
expected_q_value_batch = reward_batch + self.gamma * next_target_q_value_batch * (1-done_batch)
|
||
loss = nn.MSELoss()(q_value_batch , expected_q_value_batch)
|
||
self.optimizer.zero_grad()
|
||
loss.backward()
|
||
# clip to avoid gradient explosion
|
||
for param in self.policy_net.parameters():
|
||
param.grad.data.clamp_(-1, 1)
|
||
self.optimizer.step()
|
||
|
||
def save_model(self,path):
|
||
from pathlib import Path
|
||
# create path
|
||
Path(path).mkdir(parents=True, exist_ok=True)
|
||
torch.save(self.target_net.state_dict(), path+'checkpoint.pth')
|
||
|
||
def load_model(self,path):
|
||
self.target_net.load_state_dict(torch.load(path+'checkpoint.pth'))
|
||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||
param.data.copy_(target_param.data)
|