Files
easy-rl/projects/codes/DDPG/main.py
2022-11-06 12:15:36 +08:00

153 lines
6.6 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 20:58:21
@LastEditor: John
LastEditTime: 2022-09-27 15:50:12
@Discription:
@Environment: python 3.7.7
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
parent_path = os.path.dirname(curr_path) # parent path
sys.path.append(parent_path) # add to system path
import datetime
import gym
import torch
import argparse
import torch.nn as nn
import torch.nn.functional as F
from env import NormalizedActions,OUNoise
from ddpg import DDPG
from common.utils import all_seed
from common.memories import ReplayBufferQue
from common.launcher import Launcher
from envs.register import register_env
class Actor(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
super(Actor, self).__init__()
self.linear1 = nn.Linear(n_states, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, n_actions)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, x):
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = torch.tanh(self.linear3(x))
return x
class Critic(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
super(Critic, self).__init__()
self.linear1 = nn.Linear(n_states + n_actions, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
# 随机初始化为较小的值
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action):
# 按维数1拼接
x = torch.cat([state, action], 1)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class Main(Launcher):
def get_args(self):
""" hyperparameters
"""
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--algo_name',default='DDPG',type=str,help="name of algorithm")
parser.add_argument('--env_name',default='Pendulum-v1',type=str,help="name of environment")
parser.add_argument('--train_eps',default=300,type=int,help="episodes of training")
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
parser.add_argument('--max_steps',default=100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
parser.add_argument('--critic_lr',default=1e-3,type=float,help="learning rate of critic")
parser.add_argument('--actor_lr',default=1e-4,type=float,help="learning rate of actor")
parser.add_argument('--memory_capacity',default=8000,type=int,help="memory capacity")
parser.add_argument('--batch_size',default=128,type=int)
parser.add_argument('--target_update',default=2,type=int)
parser.add_argument('--tau',default=1e-2,type=float)
parser.add_argument('--critic_hidden_dim',default=256,type=int)
parser.add_argument('--actor_hidden_dim',default=256,type=int)
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
parser.add_argument('--seed',default=1,type=int,help="random seed")
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
args = parser.parse_args()
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
}
args = {**vars(args),**default_args} # type(dict)
return args
def env_agent_config(self,cfg):
register_env(cfg['env_name'])
env = gym.make(cfg['env_name'])
env = NormalizedActions(env) # decorate with action noise
if cfg['seed'] !=0: # set random seed
all_seed(env,seed=cfg["seed"])
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
print(f"n_states: {n_states}, n_actions: {n_actions}")
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
models = {"actor":Actor(n_states,n_actions,hidden_dim=cfg['actor_hidden_dim']),"critic":Critic(n_states,n_actions,hidden_dim=cfg['critic_hidden_dim'])}
memories = {"memory":ReplayBufferQue(cfg['memory_capacity'])}
agent = DDPG(models,memories,cfg)
return env,agent
def train(self,cfg, env, agent):
print('Start training!')
ou_noise = OUNoise(env.action_space) # noise of action
rewards = [] # record rewards for all episodes
for i_ep in range(cfg['train_eps']):
state = env.reset()
ou_noise.reset()
ep_reward = 0
for i_step in range(cfg['max_steps']):
action = agent.sample_action(state)
action = ou_noise.get_action(action, i_step+1)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push((state, action, reward, next_state, done))
agent.update()
state = next_state
if done:
break
if (i_ep+1)%10 == 0:
print(f"Env:{i_ep+1}/{cfg['train_eps']}, Reward:{ep_reward:.2f}")
rewards.append(ep_reward)
print('Finish training!')
return {'rewards':rewards}
def test(self,cfg, env, agent):
print('Start testing!')
rewards = [] # record rewards for all episodes
for i_ep in range(cfg['test_eps']):
state = env.reset()
ep_reward = 0
for i_step in range(cfg['max_steps']):
action = agent.predict_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
state = next_state
if done:
break
rewards.append(ep_reward)
print(f"Episode:{i_ep+1}/{cfg['test_eps']}, Reward:{ep_reward:.1f}")
print('Finish testing!')
return {'rewards':rewards}
if __name__ == "__main__":
main = Main()
main.run()