Files
easy-rl/projects/codes/A3C/a3c.py
2022-08-29 15:12:33 +08:00

56 lines
1.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-05-03 22:16:08
LastEditor: JiangJi
LastEditTime: 2022-07-20 23:54:40
Discription:
Environment:
'''
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical
class ActorCritic(nn.Module):
''' A2C网络模型包含一个Actor和Critic
'''
def __init__(self, input_dim, output_dim, hidden_dim):
super(ActorCritic, self).__init__()
self.critic = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
self.actor = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim),
nn.Softmax(dim=1),
)
def forward(self, x):
value = self.critic(x)
probs = self.actor(x)
dist = Categorical(probs)
return dist, value
class A2C:
''' A2C算法
'''
def __init__(self,n_states,n_actions,cfg) -> None:
self.gamma = cfg.gamma
self.device = torch.device(cfg.device)
self.model = ActorCritic(n_states, n_actions, cfg.hidden_size).to(self.device)
self.optimizer = optim.Adam(self.model.parameters())
def compute_returns(self,next_value, rewards, masks):
R = next_value
returns = []
for step in reversed(range(len(rewards))):
R = rewards[step] + self.gamma * R * masks[step]
returns.insert(0, R)
return returns