Files
easy-rl/projects/codes/A2C/task2.py
2022-11-06 12:15:36 +08:00

150 lines
6.8 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2022-10-30 01:19:43
LastEditor: JiangJi
LastEditTime: 2022-11-01 00:08:22
Discription: the only difference from task0.py is that the actor here we use ActorSoftmaxTanh instead of ActorSoftmax with ReLU
'''
import sys,os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
parent_path = os.path.dirname(curr_path) # parent path
sys.path.append(parent_path) # add path to system path
import gym
import torch
import numpy as np
from common.utils import all_seed,merge_class_attrs
from common.launcher import Launcher
from common.memories import PGReplay
from common.models import ActorNormal,Critic
from envs.register import register_env
from a2c import A2C
from config.config import GeneralConfigA2C,AlgoConfigA2C
class Main(Launcher):
def __init__(self) -> None:
super().__init__()
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigA2C())
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigA2C())
def env_agent_config(self,cfg,logger):
''' create env and agent
'''
register_env(cfg.env_name)
env = gym.make(cfg.env_name,new_step_api=True) # create env
if cfg.seed !=0: # set random seed
all_seed(env,seed = cfg.seed)
try: # state dimension
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
except AttributeError:
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
try:
n_actions = env.action_space.n # action dimension
except AttributeError:
n_actions = env.action_space.shape[0]
logger.info(f"action bound: {abs(env.action_space.low.item())}")
setattr(cfg, 'action_bound', abs(env.action_space.low.item()))
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
# update to cfg paramters
setattr(cfg, 'n_states', n_states)
setattr(cfg, 'n_actions', n_actions)
models = {'Actor':ActorNormal(n_states,n_actions, hidden_dim = cfg.actor_hidden_dim),'Critic':Critic(n_states,1,hidden_dim=cfg.critic_hidden_dim)}
memories = {'ACMemory':PGReplay()}
agent = A2C(models,memories,cfg)
for k,v in models.items():
logger.info(f"{k} model name: {type(v).__name__}")
for k,v in memories.items():
logger.info(f"{k} memory name: {type(v).__name__}")
logger.info(f"agent name: {type(agent).__name__}")
return env,agent
def train_one_episode(self, env, agent, cfg):
ep_reward = 0 # reward per episode
ep_step = 0 # step per episode
ep_entropy = 0 # entropy per episode
state = env.reset() # reset and obtain initial state
for _ in range(cfg.max_steps):
action = agent.sample_action(state) # sample action
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
state = next_state # update state
ep_reward += reward
ep_entropy += agent.entropy
ep_step += 1
if terminated:
break
agent.update(next_state,ep_entropy) # update agent
return agent,ep_reward,ep_step
def test_one_episode(self, env, agent, cfg):
ep_reward = 0 # reward per episode
ep_step = 0 # step per episode
state = env.reset() # reset and obtain initial state
for _ in range(cfg.max_steps):
action = agent.predict_action(state) # predict action
next_state, reward, terminated, truncated , info = env.step(action)
state = next_state
ep_reward += reward
ep_step += 1
if terminated:
break
return agent,ep_reward,ep_step
# def train(self,cfg,env,agent,logger):
# logger.info("Start training!")
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
# rewards = [] # record rewards for all episodes
# steps = [] # record steps for all episodes
# for i_ep in range(cfg.train_eps):
# ep_reward = 0 # reward per episode
# ep_step = 0 # step per episode
# ep_entropy = 0
# state = env.reset() # reset and obtain initial state
# for _ in range(cfg.max_steps):
# action = agent.sample_action(state) # sample action
# next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
# agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
# state = next_state # update state
# ep_reward += reward
# ep_entropy += agent.entropy
# ep_step += 1
# if terminated:
# break
# agent.update(next_state,ep_entropy) # update agent
# rewards.append(ep_reward)
# steps.append(ep_step)
# logger.info(f"Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
# logger.info("Finish training!")
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
# def test(self,cfg,env,agent,logger):
# logger.info("Start testing!")
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
# rewards = [] # record rewards for all episodes
# steps = [] # record steps for all episodes
# for i_ep in range(cfg.test_eps):
# ep_reward = 0 # reward per episode
# ep_step = 0
# state = env.reset() # reset and obtain initial state
# for _ in range(cfg.max_steps):
# action = agent.predict_action(state) # predict action
# next_state, reward, terminated, truncated , info = env.step(action)
# state = next_state
# ep_reward += reward
# ep_step += 1
# if terminated:
# break
# rewards.append(ep_reward)
# steps.append(ep_step)
# logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
# logger.info("Finish testing!")
# env.close()
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
if __name__ == "__main__":
main = Main()
main.run()