update projects

This commit is contained in:
johnjim0816
2022-07-31 23:42:12 +08:00
parent e9b3e92141
commit ffab9e3028
236 changed files with 370 additions and 133 deletions

View File

@@ -0,0 +1 @@
这是对[Implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3)](https://arxiv.org/abs/1802.09477)的复现

177
projects/codes/TD3/agent.py Normal file
View File

@@ -0,0 +1,177 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-12-22 10:40:05
LastEditor: JiangJi
LastEditTime: 2021-12-22 10:43:55
Discription:
'''
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from TD3.memory import ReplayBuffer
class Actor(nn.Module):
def __init__(self, input_dim, output_dim, max_action):
'''[summary]
Args:
input_dim (int): 输入维度这里等于n_states
output_dim (int): 输出维度这里等于n_actions
max_action (int): action的最大值
'''
super(Actor, self).__init__()
self.l1 = nn.Linear(input_dim, 256)
self.l2 = nn.Linear(256, 256)
self.l3 = nn.Linear(256, output_dim)
self.max_action = max_action
def forward(self, state):
a = F.relu(self.l1(state))
a = F.relu(self.l2(a))
return self.max_action * torch.tanh(self.l3(a))
class Critic(nn.Module):
def __init__(self, input_dim, output_dim):
super(Critic, self).__init__()
# Q1 architecture
self.l1 = nn.Linear(input_dim + output_dim, 256)
self.l2 = nn.Linear(256, 256)
self.l3 = nn.Linear(256, 1)
# Q2 architecture
self.l4 = nn.Linear(input_dim + output_dim, 256)
self.l5 = nn.Linear(256, 256)
self.l6 = nn.Linear(256, 1)
def forward(self, state, action):
sa = torch.cat([state, action], 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
q2 = F.relu(self.l4(sa))
q2 = F.relu(self.l5(q2))
q2 = self.l6(q2)
return q1, q2
def Q1(self, state, action):
sa = torch.cat([state, action], 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
return q1
class TD3(object):
def __init__(
self,
input_dim,
output_dim,
max_action,
cfg,
):
self.max_action = max_action
self.gamma = cfg.gamma
self.lr = cfg.lr
self.policy_noise = cfg.policy_noise
self.noise_clip = cfg.noise_clip
self.policy_freq = cfg.policy_freq
self.batch_size = cfg.batch_size
self.device = cfg.device
self.total_it = 0
self.actor = Actor(input_dim, output_dim, max_action).to(self.device)
self.actor_target = copy.deepcopy(self.actor)
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=3e-4)
self.critic = Critic(input_dim, output_dim).to(self.device)
self.critic_target = copy.deepcopy(self.critic)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=3e-4)
self.memory = ReplayBuffer(input_dim, output_dim)
def choose_action(self, state):
state = torch.FloatTensor(state.reshape(1, -1)).to(self.device)
return self.actor(state).cpu().data.numpy().flatten()
def update(self):
self.total_it += 1
# Sample replay buffer
state, action, next_state, reward, not_done = self.memory.sample(self.batch_size)
with torch.no_grad():
# Select action according to policy and add clipped noise
noise = (
torch.randn_like(action) * self.policy_noise
).clamp(-self.noise_clip, self.noise_clip)
next_action = (
self.actor_target(next_state) + noise
).clamp(-self.max_action, self.max_action)
# Compute the target Q value
target_Q1, target_Q2 = self.critic_target(next_state, next_action)
target_Q = torch.min(target_Q1, target_Q2)
target_Q = reward + not_done * self.gamma * target_Q
# Get current Q estimates
current_Q1, current_Q2 = self.critic(state, action)
# Compute critic loss
critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Delayed policy updates
if self.total_it % self.policy_freq == 0:
# Compute actor losse
actor_loss = -self.critic.Q1(state, self.actor(state)).mean()
# Optimize the actor
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Update the frozen target models
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(self.lr * param.data + (1 - self.lr) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(self.lr * param.data + (1 - self.lr) * target_param.data)
def save(self, path):
torch.save(self.critic.state_dict(), path + "td3_critic")
torch.save(self.critic_optimizer.state_dict(), path + "td3_critic_optimizer")
torch.save(self.actor.state_dict(), path + "td3_actor")
torch.save(self.actor_optimizer.state_dict(), path + "td3_actor_optimizer")
def load(self, path):
self.critic.load_state_dict(torch.load(path + "td3_critic"))
self.critic_optimizer.load_state_dict(torch.load(path + "td3_critic_optimizer"))
self.critic_target = copy.deepcopy(self.critic)
self.actor.load_state_dict(torch.load(path + "td3_actor"))
self.actor_optimizer.load_state_dict(torch.load(path + "td3_actor_optimizer"))
self.actor_target = copy.deepcopy(self.actor)

View File

@@ -0,0 +1,44 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-04-13 11:00:13
LastEditor: John
LastEditTime: 2021-04-15 01:25:14
Discription:
Environment:
'''
import numpy as np
import torch
class ReplayBuffer(object):
def __init__(self, n_states, n_actions, max_size=int(1e6)):
self.max_size = max_size
self.ptr = 0
self.size = 0
self.state = np.zeros((max_size, n_states))
self.action = np.zeros((max_size, n_actions))
self.next_state = np.zeros((max_size, n_states))
self.reward = np.zeros((max_size, 1))
self.not_done = np.zeros((max_size, 1))
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def push(self, state, action, next_state, reward, done):
self.state[self.ptr] = state
self.action[self.ptr] = action
self.next_state[self.ptr] = next_state
self.reward[self.ptr] = reward
self.not_done[self.ptr] = 1. - done
self.ptr = (self.ptr + 1) % self.max_size
self.size = min(self.size + 1, self.max_size)
def sample(self, batch_size):
ind = np.random.randint(0, self.size, size=batch_size)
return (
torch.FloatTensor(self.state[ind]).to(self.device),
torch.FloatTensor(self.action[ind]).to(self.device),
torch.FloatTensor(self.next_state[ind]).to(self.device),
torch.FloatTensor(self.reward[ind]).to(self.device),
torch.FloatTensor(self.not_done[ind]).to(self.device)
)

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

View File

@@ -0,0 +1,89 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-04-23 20:36:23
LastEditor: JiangJi
LastEditTime: 2021-04-23 20:37:22
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path=os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import torch
import gym
import numpy as np
import datetime
from TD3.agent import TD3
from common.plot import plot_rewards
from common.utils import save_results,make_dir
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
class TD3Config:
def __init__(self) -> None:
self.algo = 'TD3 and Random'
self.env = 'HalfCheetah-v2'
self.seed = 0
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
self.start_timestep = 25e3 # Time steps initial random policy is used
self.eval_freq = 5e3 # How often (time steps) we evaluate
self.max_timestep = 200000 # Max time steps to run environment
self.expl_noise = 0.1 # Std of Gaussian exploration noise
self.batch_size = 256 # Batch size for both actor and critic
self.gamma = 0.99 # gamma factor
self.lr = 0.0005 # Target network update rate
self.policy_noise = 0.2 # Noise added to target policy during critic update
self.noise_clip = 0.5 # Range to clip target policy noise
self.policy_freq = 2 # Frequency of delayed policy updates
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Runs policy for X episodes and returns average reward
# A fixed seed is used for the eval environment
def eval(env_name,agent, seed, eval_episodes=50):
eval_env = gym.make(env_name)
eval_env.seed(seed + 100)
rewards,ma_rewards =[],[]
for i_episode in range(eval_episodes):
ep_reward = 0
state, done = eval_env.reset(), False
while not done:
eval_env.render()
action = agent.choose_action(np.array(state))
state, reward, done, _ = eval_env.step(action)
ep_reward += reward
print(f"Episode:{i_episode+1}, Reward:{ep_reward:.3f}")
rewards.append(ep_reward)
# 计算滑动窗口的reward
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
return rewards,ma_rewards
if __name__ == "__main__":
cfg = TD3Config()
env = gym.make(cfg.env)
env.seed(cfg.seed) # Set seeds
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
td3= TD3(n_states,n_actions,max_action,cfg)
cfg.model_path = './TD3/results/HalfCheetah-v2/20210416-130341/models/'
td3.load(cfg.model_path)
td3_rewards,td3_ma_rewards = eval(cfg.env,td3,cfg.seed)
make_dir(cfg.result_path,cfg.model_path)
save_results(td3_rewards,td3_ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards({'td3_rewards':td3_rewards,'td3_ma_rewards':td3_ma_rewards,},tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
# cfg.result_path = './TD3/results/HalfCheetah-v2/20210416-130341/'
# agent.load(cfg.result_path)
# eval(cfg.env,agent, cfg.seed)

View File

@@ -0,0 +1,173 @@
import sys,os
curr_path = os.path.dirname(__file__)
parent_path=os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import torch
import gym
import numpy as np
import datetime
from TD3.agent import TD3
from common.plot import plot_rewards
from common.utils import save_results,make_dir
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
class TD3Config:
def __init__(self) -> None:
self.algo = 'TD3'
self.env = 'HalfCheetah-v2'
self.seed = 0
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
self.start_timestep = 25e3 # Time steps initial random policy is used
self.eval_freq = 5e3 # How often (time steps) we evaluate
# self.train_eps = 800
self.max_timestep = 4000000 # Max time steps to run environment
self.expl_noise = 0.1 # Std of Gaussian exploration noise
self.batch_size = 256 # Batch size for both actor and critic
self.gamma = 0.99 # gamma factor
self.lr = 0.0005 # Target network update rate
self.policy_noise = 0.2 # Noise added to target policy during critic update
self.noise_clip = 0.5 # Range to clip target policy noise
self.policy_freq = 2 # Frequency of delayed policy updates
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Runs policy for X episodes and returns average reward
# A fixed seed is used for the eval environment
def eval(env,agent, seed, eval_episodes=10):
eval_env = gym.make(env)
eval_env.seed(seed + 100)
avg_reward = 0.
for _ in range(eval_episodes):
state, done = eval_env.reset(), False
while not done:
# eval_env.render()
action = agent.choose_action(np.array(state))
state, reward, done, _ = eval_env.step(action)
avg_reward += reward
avg_reward /= eval_episodes
print("---------------------------------------")
print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}")
print("---------------------------------------")
return avg_reward
def train(cfg,env,agent):
# Evaluate untrained policy
evaluations = [eval(cfg.env,agent, cfg.seed)]
state, done = env.reset(), False
ep_reward = 0
ep_timesteps = 0
episode_num = 0
rewards = []
ma_rewards = [] # moveing average reward
for t in range(int(cfg.max_timestep)):
ep_timesteps += 1
# Select action randomly or according to policy
if t < cfg.start_timestep:
action = env.action_space.sample()
else:
action = (
agent.choose_action(np.array(state))
+ np.random.normal(0, max_action * cfg.expl_noise, size=n_actions)
).clip(-max_action, max_action)
# Perform action
next_state, reward, done, _ = env.step(action)
done_bool = float(done) if ep_timesteps < env._max_episode_steps else 0
# Store data in replay buffer
agent.memory.push(state, action, next_state, reward, done_bool)
state = next_state
ep_reward += reward
# Train agent after collecting sufficient data
if t >= cfg.start_timestep:
agent.update()
if done:
# +1 to account for 0 indexing. +0 on ep_timesteps since it will increment +1 even if done=True
print(f"Episode:{episode_num+1}, Episode T:{ep_timesteps}, Reward:{ep_reward:.3f}")
# Reset environment
state, done = env.reset(), False
rewards.append(ep_reward)
# 计算滑动窗口的reward
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
ep_reward = 0
ep_timesteps = 0
episode_num += 1
# Evaluate episode
if (t + 1) % cfg.eval_freq == 0:
evaluations.append(eval(cfg.env,agent, cfg.seed))
return rewards, ma_rewards
# def train(cfg,env,agent):
# evaluations = [eval(cfg.env,agent,cfg.seed)]
# ep_reward = 0
# tot_timestep = 0
# rewards = []
# ma_rewards = [] # moveing average reward
# for i_ep in range(int(cfg.train_eps)):
# state, done = env.reset(), False
# ep_reward = 0
# ep_timestep = 0
# while not done:
# ep_timestep += 1
# tot_timestep +=1
# # Select action randomly or according to policy
# if tot_timestep < cfg.start_timestep:
# action = env.action_space.sample()
# else:
# action = (
# agent.choose_action(np.array(state))
# + np.random.normal(0, max_action * cfg.expl_noise, size=n_actions)
# ).clip(-max_action, max_action)
# # action = (
# # agent.choose_action(np.array(state))
# # + np.random.normal(0, max_action * cfg.expl_noise, size=n_actions)
# # ).clip(-max_action, max_action)
# # Perform action
# next_state, reward, done, _ = env.step(action)
# done_bool = float(done) if ep_timestep < env._max_episode_steps else 0
# # Store data in replay buffer
# agent.memory.push(state, action, next_state, reward, done_bool)
# state = next_state
# ep_reward += reward
# # Train agent after collecting sufficient data
# if tot_timestep >= cfg.start_timestep:
# agent.update()
# print(f"Episode:{i_ep}/{cfg.train_eps}, Episode Timestep:{ep_timestep}, Reward:{ep_reward:.3f}")
# rewards.append(ep_reward)
# # 计算滑动窗口的reward
# if ma_rewards:
# ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
# else:
# ma_rewards.append(ep_reward)
# # Evaluate episode
# if (i_ep+1) % cfg.eval_freq == 0:
# evaluations.append(eval(cfg.env,agent, cfg.seed))
# return rewards,ma_rewards
if __name__ == "__main__":
cfg = TD3Config()
env = gym.make(cfg.env)
env.seed(cfg.seed) # Set seeds
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
agent = TD3(n_states,n_actions,max_action,cfg)
rewards,ma_rewards = train(cfg,env,agent)
make_dir(cfg.result_path,cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
# cfg.result_path = './TD3/results/HalfCheetah-v2/20210416-130341/'
# agent.load(cfg.result_path)
# eval(cfg.env,agent, cfg.seed)

View File

@@ -0,0 +1,83 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-04-23 20:36:23
LastEditor: JiangJi
LastEditTime: 2021-04-28 10:14:33
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path=os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import torch
import gym
import numpy as np
import datetime
from TD3.agent import TD3
from common.plot import plot_rewards
from common.utils import save_results,make_dir
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
class TD3Config:
def __init__(self) -> None:
self.algo = 'TD3'
self.env = 'Pendulum-v0'
self.seed = 0
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
self.batch_size = 256 # Batch size for both actor and critic
self.gamma = 0.99 # gamma factor
self.lr = 0.0005 # Target network update rate
self.policy_noise = 0.2 # Noise added to target policy during critic update
self.noise_clip = 0.5 # Range to clip target policy noise
self.policy_freq = 2 # Frequency of delayed policy updates
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Runs policy for X episodes and returns average reward
# A fixed seed is used for the eval environment
def eval(env_name,agent, seed, eval_episodes=50):
eval_env = gym.make(env_name)
eval_env.seed(seed + 100)
rewards,ma_rewards =[],[]
for i_episode in range(eval_episodes):
ep_reward = 0
state, done = eval_env.reset(), False
while not done:
# eval_env.render()
action = agent.choose_action(np.array(state))
state, reward, done, _ = eval_env.step(action)
ep_reward += reward
print(f"Episode:{i_episode+1}, Reward:{ep_reward:.3f}")
rewards.append(ep_reward)
# 计算滑动窗口的reward
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
return rewards,ma_rewards
if __name__ == "__main__":
cfg = TD3Config()
env = gym.make(cfg.env)
env.seed(cfg.seed) # Set seeds
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
td3= TD3(n_states,n_actions,max_action,cfg)
cfg.model_path = './TD3/results/Pendulum-v0/20210428-092059/models/'
cfg.result_path = './TD3/results/Pendulum-v0/20210428-092059/results/'
td3.load(cfg.model_path)
rewards,ma_rewards = eval(cfg.env,td3,cfg.seed)
make_dir(cfg.result_path,cfg.model_path)
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)

View File

@@ -0,0 +1,122 @@
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import torch
import gym
import numpy as np
import datetime
from TD3.agent import TD3
from common.plot import plot_rewards
from common.utils import save_results,make_dir
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
class TD3Config:
def __init__(self) -> None:
self.algo = 'TD3' # 算法名称
self.env_name = 'Pendulum-v1' # 环境名称
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.train_eps = 600 # 训练的回合数
self.start_timestep = 25e3 # Time steps initial random policy is used
self.epsilon_start = 50 # Episodes initial random policy is used
self.eval_freq = 10 # How often (episodes) we evaluate
self.max_timestep = 100000 # Max time steps to run environment
self.expl_noise = 0.1 # Std of Gaussian exploration noise
self.batch_size = 256 # Batch size for both actor and critic
self.gamma = 0.9 # gamma factor
self.lr = 0.0005 # 学习率
self.policy_noise = 0.2 # Noise added to target policy during critic update
self.noise_clip = 0.3 # Range to clip target policy noise
self.policy_freq = 2 # Frequency of delayed policy updates
class PlotConfig(TD3Config):
def __init__(self) -> None:
super().__init__()
self.result_path = curr_path+"/outputs/" + self.env_name + \
'/'+curr_time+'/results/' # 保存结果的路径
self.model_path = curr_path+"/outputs/" + self.env_name + \
'/'+curr_time+'/models/' # 保存模型的路径
self.save = True # 是否保存图片
# Runs policy for X episodes and returns average reward
# A fixed seed is used for the eval environment
def eval(env,agent, seed, eval_episodes=10):
eval_env = gym.make(env)
eval_env.seed(seed + 100)
avg_reward = 0.
for _ in range(eval_episodes):
state, done = eval_env.reset(), False
while not done:
# eval_env.render()
action = agent.choose_action(np.array(state))
state, reward, done, _ = eval_env.step(action)
avg_reward += reward
avg_reward /= eval_episodes
print("---------------------------------------")
print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}")
print("---------------------------------------")
return avg_reward
def train(cfg,env,agent):
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(int(cfg.train_eps)):
ep_reward = 0
ep_timesteps = 0
state, done = env.reset(), False
while not done:
ep_timesteps += 1
# Select action randomly or according to policy
if i_ep < cfg.epsilon_start:
action = env.action_space.sample()
else:
action = (
agent.choose_action(np.array(state))
+ np.random.normal(0, max_action * cfg.expl_noise, size=n_actions)
).clip(-max_action, max_action)
# Perform action
next_state, reward, done, _ = env.step(action)
done_bool = float(done) if ep_timesteps < env._max_episode_steps else 0
# Store data in replay buffer
agent.memory.push(state, action, next_state, reward, done_bool)
state = next_state
ep_reward += reward
# Train agent after collecting sufficient data
if i_ep+1 >= cfg.epsilon_start:
agent.update()
if (i_ep+1)%10 == 0:
print('回合:{}/{}, 奖励:{:.2f}'.format(i_ep+1, cfg.train_eps, ep_reward))
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('完成训练!')
return rewards, ma_rewards
if __name__ == "__main__":
cfg = TD3Config()
plot_cfg = PlotConfig()
env = gym.make(cfg.env_name)
env.seed(1) # 随机种子
torch.manual_seed(1)
np.random.seed(1)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
agent = TD3(n_states,n_actions,max_action,cfg)
rewards,ma_rewards = train(cfg,env,agent)
make_dir(plot_cfg.result_path,plot_cfg.model_path)
agent.save(path=plot_cfg.model_path)
save_results(rewards,ma_rewards,tag='train',path=plot_cfg.result_path)
plot_rewards(rewards,ma_rewards,plot_cfg,tag="train")