update projects

This commit is contained in:
johnjim0816
2022-07-31 23:42:12 +08:00
parent e9b3e92141
commit ffab9e3028
236 changed files with 370 additions and 133 deletions

View File

@@ -0,0 +1,221 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"from pathlib import Path\n",
"curr_path = str(Path().absolute())\n",
"parent_path = str(Path().absolute().parent)\n",
"sys.path.append(parent_path) # add current terminal path to sys.path"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import gym\n",
"import torch\n",
"import datetime\n",
"\n",
"from SAC.env import NormalizedActions\n",
"from SAC.agent import SAC\n",
"from common.utils import save_results, make_dir\n",
"from common.plot import plot_rewards\n",
"\n",
"curr_time = datetime.datetime.now().strftime(\"%Y%m%d-%H%M%S\") # obtain current time"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"class SACConfig:\n",
" def __init__(self) -> None:\n",
" self.algo = 'SAC'\n",
" self.env = 'Pendulum-v0'\n",
" self.result_path = curr_path+\"/outputs/\" +self.env+'/'+curr_time+'/results/' # path to save results\n",
" self.model_path = curr_path+\"/outputs/\" +self.env+'/'+curr_time+'/models/' # path to save models\n",
" self.train_eps = 300\n",
" self.train_steps = 500\n",
" self.test_eps = 50\n",
" self.eval_steps = 500\n",
" self.gamma = 0.99\n",
" self.mean_lambda=1e-3\n",
" self.std_lambda=1e-3\n",
" self.z_lambda=0.0\n",
" self.soft_tau=1e-2\n",
" self.value_lr = 3e-4\n",
" self.soft_q_lr = 3e-4\n",
" self.policy_lr = 3e-4\n",
" self.capacity = 1000000\n",
" self.hidden_dim = 256\n",
" self.batch_size = 128\n",
" self.device=torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def env_agent_config(cfg,seed=1):\n",
" env = NormalizedActions(gym.make(\"Pendulum-v0\"))\n",
" env.seed(seed)\n",
" n_actions = env.action_space.shape[0]\n",
" n_states = env.observation_space.shape[0]\n",
" agent = SAC(n_states,n_actions,cfg)\n",
" return env,agent"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def train(cfg,env,agent):\n",
" print('Start to train !')\n",
" print(f'Env: {cfg.env}, Algorithm: {cfg.algo}, Device: {cfg.device}')\n",
" rewards = []\n",
" ma_rewards = [] # moveing average reward\n",
" for i_ep in range(cfg.train_eps):\n",
" state = env.reset()\n",
" ep_reward = 0\n",
" for i_step in range(cfg.train_steps):\n",
" action = agent.policy_net.get_action(state)\n",
" next_state, reward, done, _ = env.step(action)\n",
" agent.memory.push(state, action, reward, next_state, done)\n",
" agent.update()\n",
" state = next_state\n",
" ep_reward += reward\n",
" if done:\n",
" break\n",
" if (i_ep+1)%10==0:\n",
" print(f\"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}\")\n",
" rewards.append(ep_reward)\n",
" if ma_rewards:\n",
" ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)\n",
" else:\n",
" ma_rewards.append(ep_reward) \n",
" print('Complete training')\n",
" return rewards, ma_rewards"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def eval(cfg,env,agent):\n",
" print('Start to eval !')\n",
" print(f'Env: {cfg.env}, Algorithm: {cfg.algo}, Device: {cfg.device}')\n",
" rewards = []\n",
" ma_rewards = [] # moveing average reward\n",
" for i_ep in range(cfg.test_eps):\n",
" state = env.reset()\n",
" ep_reward = 0\n",
" for i_step in range(cfg.eval_steps):\n",
" action = agent.policy_net.get_action(state)\n",
" next_state, reward, done, _ = env.step(action)\n",
" state = next_state\n",
" ep_reward += reward\n",
" if done:\n",
" break\n",
" if (i_ep+1)%10==0:\n",
" print(f\"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}\")\n",
" rewards.append(ep_reward)\n",
" if ma_rewards:\n",
" ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)\n",
" else:\n",
" ma_rewards.append(ep_reward) \n",
" print('Complete evaling')\n",
" return rewards, ma_rewards\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"ename": "DeprecatedEnv",
"evalue": "Env Pendulum-v0 not found (valid versions include ['Pendulum-v1'])",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m~/anaconda3/envs/py37/lib/python3.7/site-packages/gym/envs/registration.py\u001b[0m in \u001b[0;36mspec\u001b[0;34m(self, path)\u001b[0m\n\u001b[1;32m 157\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 158\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0menv_specs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mid\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 159\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mKeyError\u001b[0m: 'Pendulum-v0'",
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[0;31mDeprecatedEnv\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-7-91b1038013e4>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# train\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0menv\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0magent\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv_agent_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0mrewards\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mma_rewards\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0magent\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mmake_dir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcfg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m<ipython-input-4-040773221550>\u001b[0m in \u001b[0;36menv_agent_config\u001b[0;34m(cfg, seed)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0menv_agent_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0menv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNormalizedActions\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgym\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Pendulum-v0\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mn_actions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maction_space\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mn_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobservation_space\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/py37/lib/python3.7/site-packages/gym/envs/registration.py\u001b[0m in \u001b[0;36mmake\u001b[0;34m(id, **kwargs)\u001b[0m\n\u001b[1;32m 233\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 234\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 235\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mregistry\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 236\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 237\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/py37/lib/python3.7/site-packages/gym/envs/registration.py\u001b[0m in \u001b[0;36mmake\u001b[0;34m(self, path, **kwargs)\u001b[0m\n\u001b[1;32m 126\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 127\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Making new env: %s\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 128\u001b[0;31m \u001b[0mspec\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mspec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 129\u001b[0m \u001b[0menv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mspec\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/py37/lib/python3.7/site-packages/gym/envs/registration.py\u001b[0m in \u001b[0;36mspec\u001b[0;34m(self, path)\u001b[0m\n\u001b[1;32m 185\u001b[0m raise error.DeprecatedEnv(\n\u001b[1;32m 186\u001b[0m \"Env {} not found (valid versions include {})\".format(\n\u001b[0;32m--> 187\u001b[0;31m \u001b[0mid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmatching_envs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 188\u001b[0m )\n\u001b[1;32m 189\u001b[0m )\n",
"\u001b[0;31mDeprecatedEnv\u001b[0m: Env Pendulum-v0 not found (valid versions include ['Pendulum-v1'])"
]
}
],
"source": [
"if __name__ == \"__main__\":\n",
" cfg=SACConfig()\n",
" \n",
" # train\n",
" env,agent = env_agent_config(cfg,seed=1)\n",
" rewards, ma_rewards = train(cfg, env, agent)\n",
" make_dir(cfg.result_path, cfg.model_path)\n",
" agent.save(path=cfg.model_path)\n",
" save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)\n",
" plot_rewards(rewards, ma_rewards, tag=\"train\",\n",
" algo=cfg.algo, path=cfg.result_path)\n",
" # eval\n",
" env,agent = env_agent_config(cfg,seed=10)\n",
" agent.load(path=cfg.model_path)\n",
" rewards,ma_rewards = eval(cfg,env,agent)\n",
" save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)\n",
" plot_rewards(rewards,ma_rewards,tag=\"eval\",env=cfg.env,algo = cfg.algo,path=cfg.result_path)\n"
]
}
],
"metadata": {
"interpreter": {
"hash": "fe38df673a99c62a9fea33a7aceda74c9b65b12ee9d076c5851d98b692a4989a"
},
"kernelspec": {
"display_name": "Python 3.7.10 64-bit ('mujoco': conda)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.10"
},
"metadata": {
"interpreter": {
"hash": "fd81e6a9e450d5c245c1a0b5da0b03c89c450f614a13afa2acb1654375922756"
}
},
"orig_nbformat": 2
},
"nbformat": 4,
"nbformat_minor": 2
}