update projects

This commit is contained in:
johnjim0816
2022-07-31 23:42:12 +08:00
parent e9b3e92141
commit ffab9e3028
236 changed files with 370 additions and 133 deletions

View File

@@ -0,0 +1,177 @@
import sys
import os
import torch.nn as nn
import torch.nn.functional as F
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import gym
import torch
import datetime
import numpy as np
from common.utils import save_results_1, make_dir
from common.utils import plot_rewards
from dqn import DQN
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
class MLP(nn.Module):
def __init__(self, n_states,n_actions,hidden_dim=128):
""" 初始化q网络为全连接网络
n_states: 输入的特征数即环境的状态维度
n_actions: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
def forward(self, x):
# 各层对应的激活函数
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
class Config:
'''超参数
'''
def __init__(self):
############################### hyperparameters ################################
self.algo_name = 'DQN' # algorithm name
self.env_name = 'CartPole-v0' # environment name
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # check GPU
self.seed = 10 # 随机种子置0则不设置随机种子
self.train_eps = 200 # 训练的回合数
self.test_eps = 20 # 测试的回合数
################################################################################
################################## 算法超参数 ###################################
self.gamma = 0.95 # 强化学习中的折扣因子
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
self.lr = 0.0001 # 学习率
self.memory_capacity = 100000 # 经验回放的容量
self.batch_size = 64 # mini-batch SGD中的批量大小
self.target_update = 4 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层
################################################################################
################################# 保存结果相关参数 ################################
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
################################################################################
def env_agent_config(cfg):
''' 创建环境和智能体
'''
env = gym.make(cfg.env_name) # 创建环境
n_states = env.observation_space.shape[0] # 状态维度
n_actions = env.action_space.n # 动作维度
print(f"n states: {n_states}, n actions: {n_actions}")
model = MLP(n_states,n_actions)
agent = DQN(n_actions, model, cfg) # 创建智能体
if cfg.seed !=0: # 设置随机种子
torch.manual_seed(cfg.seed)
env.seed(cfg.seed)
np.random.seed(cfg.seed)
return env, agent
def train(cfg, env, agent):
''' 训练
'''
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
steps = []
for i_ep in range(cfg.train_eps):
ep_reward = 0 # 记录一回合内的奖励
ep_step = 0
state = env.reset() # 重置环境,返回初始状态
while True:
ep_step += 1
action = agent.choose_action(state) # 选择动作
next_state, reward, done, _ = env.step(action) # 更新环境返回transition
agent.memory.push(state, action, reward,
next_state, done) # 保存transition
state = next_state # 更新下一个状态
agent.update() # 更新智能体
ep_reward += reward # 累加奖励
if done:
break
if (i_ep + 1) % cfg.target_update == 0: # 智能体目标网络更新
agent.target_net.load_state_dict(agent.policy_net.state_dict())
steps.append(ep_step)
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9 * ma_rewards[-1] + 0.1 * ep_reward)
else:
ma_rewards.append(ep_reward)
if (i_ep + 1) % 1 == 0:
print(f'Episode{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f} Epislon:{agent.epsilon(agent.frame_idx):.3f}')
print('Finish training!')
env.close()
res_dic = {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
return res_dic
def test(cfg, env, agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
############# 由于测试不需要使用epsilon-greedy策略所以相应的值设置为0 ###############
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
################################################################################
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
steps = []
for i_ep in range(cfg.test_eps):
ep_reward = 0 # 记录一回合内的奖励
ep_step = 0
state = env.reset() # 重置环境,返回初始状态
while True:
ep_step+=1
action = agent.choose_action(state) # 选择动作
next_state, reward, done, _ = env.step(action) # 更新环境返回transition
state = next_state # 更新下一个状态
ep_reward += reward # 累加奖励
if done:
break
steps.append(ep_step)
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1] * 0.9 + ep_reward * 0.1)
else:
ma_rewards.append(ep_reward)
print(f'Episode{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f}')
print('完成测试!')
env.close()
return {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
if __name__ == "__main__":
cfg = Config()
# 训练
env, agent = env_agent_config(cfg)
res_dic = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=cfg.model_path) # 保存模型
save_results_1(res_dic, tag='train',
path=cfg.result_path) # 保存结果
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train") # 画出结果
# 测试
env, agent = env_agent_config(cfg)
agent.load(path=cfg.model_path) # 导入模型
res_dic = test(cfg, env, agent)
save_results_1(res_dic, tag='test',
path=cfg.result_path) # 保存结果
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'],cfg, tag="test") # 画出结果