update projects
This commit is contained in:
215
projects/codes/RainbowDQN/rainbow_dqn.py
Normal file
215
projects/codes/RainbowDQN/rainbow_dqn.py
Normal file
@@ -0,0 +1,215 @@
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
from torch.autograd import Variable
|
||||
import random
|
||||
class ReplayBuffer:
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity # 经验回放的容量
|
||||
self.buffer = [] # 缓冲区
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
|
||||
'''
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
|
||||
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
|
||||
return state, action, reward, next_state, done
|
||||
|
||||
def __len__(self):
|
||||
''' 返回当前存储的量
|
||||
'''
|
||||
return len(self.buffer)
|
||||
class NoisyLinear(nn.Module):
|
||||
def __init__(self, input_dim, output_dim, device, std_init=0.4):
|
||||
super(NoisyLinear, self).__init__()
|
||||
|
||||
self.device = device
|
||||
self.input_dim = input_dim
|
||||
self.output_dim = output_dim
|
||||
self.std_init = std_init
|
||||
|
||||
self.weight_mu = nn.Parameter(torch.FloatTensor(output_dim, input_dim))
|
||||
self.weight_sigma = nn.Parameter(torch.FloatTensor(output_dim, input_dim))
|
||||
self.register_buffer('weight_epsilon', torch.FloatTensor(output_dim, input_dim))
|
||||
|
||||
self.bias_mu = nn.Parameter(torch.FloatTensor(output_dim))
|
||||
self.bias_sigma = nn.Parameter(torch.FloatTensor(output_dim))
|
||||
self.register_buffer('bias_epsilon', torch.FloatTensor(output_dim))
|
||||
|
||||
self.reset_parameters()
|
||||
self.reset_noise()
|
||||
|
||||
def forward(self, x):
|
||||
if self.device:
|
||||
weight_epsilon = self.weight_epsilon.cuda()
|
||||
bias_epsilon = self.bias_epsilon.cuda()
|
||||
else:
|
||||
weight_epsilon = self.weight_epsilon
|
||||
bias_epsilon = self.bias_epsilon
|
||||
|
||||
if self.training:
|
||||
weight = self.weight_mu + self.weight_sigma.mul(Variable(weight_epsilon))
|
||||
bias = self.bias_mu + self.bias_sigma.mul(Variable(bias_epsilon))
|
||||
else:
|
||||
weight = self.weight_mu
|
||||
bias = self.bias_mu
|
||||
|
||||
return F.linear(x, weight, bias)
|
||||
|
||||
def reset_parameters(self):
|
||||
mu_range = 1 / math.sqrt(self.weight_mu.size(1))
|
||||
|
||||
self.weight_mu.data.uniform_(-mu_range, mu_range)
|
||||
self.weight_sigma.data.fill_(self.std_init / math.sqrt(self.weight_sigma.size(1)))
|
||||
|
||||
self.bias_mu.data.uniform_(-mu_range, mu_range)
|
||||
self.bias_sigma.data.fill_(self.std_init / math.sqrt(self.bias_sigma.size(0)))
|
||||
|
||||
def reset_noise(self):
|
||||
epsilon_in = self._scale_noise(self.input_dim)
|
||||
epsilon_out = self._scale_noise(self.output_dim)
|
||||
|
||||
self.weight_epsilon.copy_(epsilon_out.ger(epsilon_in))
|
||||
self.bias_epsilon.copy_(self._scale_noise(self.output_dim))
|
||||
|
||||
def _scale_noise(self, size):
|
||||
x = torch.randn(size)
|
||||
x = x.sign().mul(x.abs().sqrt())
|
||||
return x
|
||||
|
||||
class RainbowModel(nn.Module):
|
||||
def __init__(self, n_states, n_actions, n_atoms, Vmin, Vmax):
|
||||
super(RainbowModel, self).__init__()
|
||||
|
||||
self.n_states = n_states
|
||||
self.n_actions = n_actions
|
||||
self.n_atoms = n_atoms
|
||||
self.Vmin = Vmin
|
||||
self.Vmax = Vmax
|
||||
|
||||
self.linear1 = nn.Linear(n_states, 32)
|
||||
self.linear2 = nn.Linear(32, 64)
|
||||
|
||||
self.noisy_value1 = NoisyLinear(64, 64, device=device)
|
||||
self.noisy_value2 = NoisyLinear(64, self.n_atoms, device=device)
|
||||
|
||||
self.noisy_advantage1 = NoisyLinear(64, 64, device=device)
|
||||
self.noisy_advantage2 = NoisyLinear(64, self.n_atoms * self.n_actions, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
batch_size = x.size(0)
|
||||
|
||||
x = F.relu(self.linear1(x))
|
||||
x = F.relu(self.linear2(x))
|
||||
|
||||
value = F.relu(self.noisy_value1(x))
|
||||
value = self.noisy_value2(value)
|
||||
|
||||
advantage = F.relu(self.noisy_advantage1(x))
|
||||
advantage = self.noisy_advantage2(advantage)
|
||||
|
||||
value = value.view(batch_size, 1, self.n_atoms)
|
||||
advantage = advantage.view(batch_size, self.n_actions, self.n_atoms)
|
||||
|
||||
x = value + advantage - advantage.mean(1, keepdim=True)
|
||||
x = F.softmax(x.view(-1, self.n_atoms)).view(-1, self.n_actions, self.n_atoms)
|
||||
|
||||
return x
|
||||
|
||||
def reset_noise(self):
|
||||
self.noisy_value1.reset_noise()
|
||||
self.noisy_value2.reset_noise()
|
||||
self.noisy_advantage1.reset_noise()
|
||||
self.noisy_advantage2.reset_noise()
|
||||
|
||||
def act(self, state):
|
||||
state = Variable(torch.FloatTensor(state).unsqueeze(0), volatile=True)
|
||||
dist = self.forward(state).data.cpu()
|
||||
dist = dist * torch.linspace(self.Vmin, self.Vmax, self.n_atoms)
|
||||
action = dist.sum(2).max(1)[1].numpy()[0]
|
||||
return action
|
||||
|
||||
class RainbowDQN(nn.Module):
|
||||
def __init__(self, n_states, n_actions, n_atoms, Vmin, Vmax,cfg):
|
||||
super(RainbowDQN, self).__init__()
|
||||
self.n_states = n_states
|
||||
self.n_actions = n_actions
|
||||
self.n_atoms = cfg.n_atoms
|
||||
self.Vmin = cfg.Vmin
|
||||
self.Vmax = cfg.Vmax
|
||||
self.policy_model = RainbowModel(n_states, n_actions, n_atoms, Vmin, Vmax)
|
||||
self.target_model = RainbowModel(n_states, n_actions, n_atoms, Vmin, Vmax)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity) # 经验回放
|
||||
self.optimizer = optim.Adam(self.policy_model.parameters(), 0.001)
|
||||
def choose_action(self,state):
|
||||
state = Variable(torch.FloatTensor(state).unsqueeze(0), volatile=True)
|
||||
dist = self.policy_model(state).data.cpu()
|
||||
dist = dist * torch.linspace(self.Vmin, self.Vmax, self.n_atoms)
|
||||
action = dist.sum(2).max(1)[1].numpy()[0]
|
||||
return action
|
||||
def projection_distribution(self,next_state, rewards, dones):
|
||||
|
||||
|
||||
delta_z = float(self.Vmax - self.Vmin) / (self.n_atoms - 1)
|
||||
support = torch.linspace(self.Vmin, self.Vmax, self.n_atoms)
|
||||
|
||||
next_dist = self.target_model(next_state).data.cpu() * support
|
||||
next_action = next_dist.sum(2).max(1)[1]
|
||||
next_action = next_action.unsqueeze(1).unsqueeze(1).expand(next_dist.size(0), 1, next_dist.size(2))
|
||||
next_dist = next_dist.gather(1, next_action).squeeze(1)
|
||||
|
||||
rewards = rewards.unsqueeze(1).expand_as(next_dist)
|
||||
dones = dones.unsqueeze(1).expand_as(next_dist)
|
||||
support = support.unsqueeze(0).expand_as(next_dist)
|
||||
|
||||
Tz = rewards + (1 - dones) * 0.99 * support
|
||||
Tz = Tz.clamp(min=self.Vmin, max=self.Vmax)
|
||||
b = (Tz - self.Vmin) / delta_z
|
||||
l = b.floor().long()
|
||||
u = b.ceil().long()
|
||||
|
||||
offset = torch.linspace(0, (self.batch_size - 1) * self.n_atoms, self.batch_size).long()\
|
||||
.unsqueeze(1).expand(self.batch_size, self.n_atoms)
|
||||
|
||||
proj_dist = torch.zeros(next_dist.size())
|
||||
proj_dist.view(-1).index_add_(0, (l + offset).view(-1), (next_dist * (u.float() - b)).view(-1))
|
||||
proj_dist.view(-1).index_add_(0, (u + offset).view(-1), (next_dist * (b - l.float())).view(-1))
|
||||
|
||||
return proj_dist
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略
|
||||
return
|
||||
state, action, reward, next_state, done = self.memory.sample(self.batch_size)
|
||||
|
||||
state = Variable(torch.FloatTensor(np.float32(state)))
|
||||
next_state = Variable(torch.FloatTensor(np.float32(next_state)), volatile=True)
|
||||
action = Variable(torch.LongTensor(action))
|
||||
reward = torch.FloatTensor(reward)
|
||||
done = torch.FloatTensor(np.float32(done))
|
||||
|
||||
proj_dist = self.projection_distribution(next_state, reward, done)
|
||||
|
||||
dist = self.policy_model(state)
|
||||
action = action.unsqueeze(1).unsqueeze(1).expand(self.batch_size, 1, self.n_atoms)
|
||||
dist = dist.gather(1, action).squeeze(1)
|
||||
dist.data.clamp_(0.01, 0.99)
|
||||
loss = -(Variable(proj_dist) * dist.log()).sum(1)
|
||||
loss = loss.mean()
|
||||
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
|
||||
self.policy_model.reset_noise()
|
||||
self.target_model.reset_noise()
|
||||
|
||||
177
projects/codes/RainbowDQN/task0.py
Normal file
177
projects/codes/RainbowDQN/task0.py
Normal file
@@ -0,0 +1,177 @@
|
||||
import sys
|
||||
import os
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加路径到系统路径
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
import numpy as np
|
||||
from common.utils import save_results_1, make_dir
|
||||
from common.utils import plot_rewards
|
||||
from dqn import DQN
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, n_states,n_actions,hidden_dim=128):
|
||||
""" 初始化q网络,为全连接网络
|
||||
n_states: 输入的特征数即环境的状态维度
|
||||
n_actions: 输出的动作维度
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
|
||||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||||
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
return self.fc3(x)
|
||||
|
||||
class Config:
|
||||
'''超参数
|
||||
'''
|
||||
|
||||
def __init__(self):
|
||||
############################### hyperparameters ################################
|
||||
self.algo_name = 'DQN' # algorithm name
|
||||
self.env_name = 'CartPole-v0' # environment name
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # check GPU
|
||||
self.seed = 10 # 随机种子,置0则不设置随机种子
|
||||
self.train_eps = 200 # 训练的回合数
|
||||
self.test_eps = 20 # 测试的回合数
|
||||
################################################################################
|
||||
|
||||
################################## 算法超参数 ###################################
|
||||
self.gamma = 0.95 # 强化学习中的折扣因子
|
||||
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
|
||||
self.lr = 0.0001 # 学习率
|
||||
self.memory_capacity = 100000 # 经验回放的容量
|
||||
self.batch_size = 64 # mini-batch SGD中的批量大小
|
||||
self.target_update = 4 # 目标网络的更新频率
|
||||
self.hidden_dim = 256 # 网络隐藏层
|
||||
################################################################################
|
||||
|
||||
################################# 保存结果相关参数 ################################
|
||||
self.result_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/results/' # 保存结果的路径
|
||||
self.model_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/models/' # 保存模型的路径
|
||||
self.save = True # 是否保存图片
|
||||
################################################################################
|
||||
|
||||
|
||||
def env_agent_config(cfg):
|
||||
''' 创建环境和智能体
|
||||
'''
|
||||
env = gym.make(cfg.env_name) # 创建环境
|
||||
n_states = env.observation_space.shape[0] # 状态维度
|
||||
n_actions = env.action_space.n # 动作维度
|
||||
print(f"n states: {n_states}, n actions: {n_actions}")
|
||||
model = MLP(n_states,n_actions)
|
||||
agent = DQN(n_actions, model, cfg) # 创建智能体
|
||||
if cfg.seed !=0: # 设置随机种子
|
||||
torch.manual_seed(cfg.seed)
|
||||
env.seed(cfg.seed)
|
||||
np.random.seed(cfg.seed)
|
||||
return env, agent
|
||||
|
||||
|
||||
def train(cfg, env, agent):
|
||||
''' 训练
|
||||
'''
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
steps = []
|
||||
for i_ep in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
ep_step = 0
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
while True:
|
||||
ep_step += 1
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
agent.memory.push(state, action, reward,
|
||||
next_state, done) # 保存transition
|
||||
state = next_state # 更新下一个状态
|
||||
agent.update() # 更新智能体
|
||||
ep_reward += reward # 累加奖励
|
||||
if done:
|
||||
break
|
||||
if (i_ep + 1) % cfg.target_update == 0: # 智能体目标网络更新
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
steps.append(ep_step)
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9 * ma_rewards[-1] + 0.1 * ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
if (i_ep + 1) % 1 == 0:
|
||||
print(f'Episode:{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f} Epislon:{agent.epsilon(agent.frame_idx):.3f}')
|
||||
print('Finish training!')
|
||||
env.close()
|
||||
res_dic = {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
|
||||
return res_dic
|
||||
|
||||
|
||||
def test(cfg, env, agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
############# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0 ###############
|
||||
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
|
||||
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
|
||||
################################################################################
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
steps = []
|
||||
for i_ep in range(cfg.test_eps):
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
ep_step = 0
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
while True:
|
||||
ep_step+=1
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
state = next_state # 更新下一个状态
|
||||
ep_reward += reward # 累加奖励
|
||||
if done:
|
||||
break
|
||||
steps.append(ep_step)
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1] * 0.9 + ep_reward * 0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f}')
|
||||
print('完成测试!')
|
||||
env.close()
|
||||
return {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = Config()
|
||||
# 训练
|
||||
env, agent = env_agent_config(cfg)
|
||||
res_dic = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||
agent.save(path=cfg.model_path) # 保存模型
|
||||
save_results_1(res_dic, tag='train',
|
||||
path=cfg.result_path) # 保存结果
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train") # 画出结果
|
||||
# 测试
|
||||
env, agent = env_agent_config(cfg)
|
||||
agent.load(path=cfg.model_path) # 导入模型
|
||||
res_dic = test(cfg, env, agent)
|
||||
save_results_1(res_dic, tag='test',
|
||||
path=cfg.result_path) # 保存结果
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'],cfg, tag="test") # 画出结果
|
||||
Reference in New Issue
Block a user