update projects

This commit is contained in:
johnjim0816
2022-07-31 23:42:12 +08:00
parent e9b3e92141
commit ffab9e3028
236 changed files with 370 additions and 133 deletions

View File

@@ -0,0 +1,60 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-12-22 10:54:57
Discription: use defaultdict to define Q table
Environment:
'''
import numpy as np
import math
import torch
from collections import defaultdict
class QLearning(object):
def __init__(self,n_states,
n_actions,cfg):
self.n_actions = n_actions
self.lr = cfg.lr # 学习率
self.gamma = cfg.gamma
self.epsilon = 0
self.sample_count = 0
self.epsilon_start = cfg.epsilon_start
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.Q_table = defaultdict(lambda: np.zeros(n_actions)) # 用嵌套字典存放状态->动作->状态-动作值Q值的映射即Q表
def choose_action(self, state):
self.sample_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.sample_count / self.epsilon_decay) # epsilon是会递减的这里选择指数递减
# e-greedy 策略
if np.random.uniform(0, 1) > self.epsilon:
action = np.argmax(self.Q_table[str(state)]) # 选择Q(s,a)最大对应的动作
else:
action = np.random.choice(self.n_actions) # 随机选择动作
return action
def predict(self,state):
action = np.argmax(self.Q_table[str(state)])
return action
def update(self, state, action, reward, next_state, done):
Q_predict = self.Q_table[str(state)][action]
if done: # 终止状态
Q_target = reward
else:
Q_target = reward + self.gamma * np.max(self.Q_table[str(next_state)])
self.Q_table[str(state)][action] += self.lr * (Q_target - Q_predict)
def save(self,path):
import dill
torch.save(
obj=self.Q_table,
f=path+"Qleaning_model.pkl",
pickle_module=dill
)
print("保存模型成功!")
def load(self, path):
import dill
self.Q_table =torch.load(f=path+'Qleaning_model.pkl',pickle_module=dill)
print("加载模型成功!")