update projects
This commit is contained in:
89
projects/codes/PolicyGradient/pg.py
Normal file
89
projects/codes/PolicyGradient/pg.py
Normal file
@@ -0,0 +1,89 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-22 23:27:44
|
||||
LastEditor: John
|
||||
LastEditTime: 2022-02-10 01:25:27
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.distributions import Bernoulli
|
||||
from torch.autograd import Variable
|
||||
import numpy as np
|
||||
|
||||
class MLP(nn.Module):
|
||||
|
||||
''' 多层感知机
|
||||
输入:state维度
|
||||
输出:概率
|
||||
'''
|
||||
def __init__(self,input_dim,hidden_dim = 36):
|
||||
super(MLP, self).__init__()
|
||||
# 24和36为hidden layer的层数,可根据input_dim, n_actions的情况来改变
|
||||
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
||||
self.fc2 = nn.Linear(hidden_dim,hidden_dim)
|
||||
self.fc3 = nn.Linear(hidden_dim, 1) # Prob of Left
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
x = F.sigmoid(self.fc3(x))
|
||||
return x
|
||||
|
||||
class PolicyGradient:
|
||||
|
||||
def __init__(self, n_states,cfg):
|
||||
self.gamma = cfg.gamma
|
||||
self.policy_net = MLP(n_states,hidden_dim=cfg.hidden_dim)
|
||||
self.optimizer = torch.optim.RMSprop(self.policy_net.parameters(), lr=cfg.lr)
|
||||
self.batch_size = cfg.batch_size
|
||||
|
||||
def choose_action(self,state):
|
||||
|
||||
state = torch.from_numpy(state).float()
|
||||
state = Variable(state)
|
||||
probs = self.policy_net(state)
|
||||
m = Bernoulli(probs) # 伯努利分布
|
||||
action = m.sample()
|
||||
action = action.data.numpy().astype(int)[0] # 转为标量
|
||||
return action
|
||||
|
||||
def update(self,reward_pool,state_pool,action_pool):
|
||||
# Discount reward
|
||||
running_add = 0
|
||||
for i in reversed(range(len(reward_pool))):
|
||||
if reward_pool[i] == 0:
|
||||
running_add = 0
|
||||
else:
|
||||
running_add = running_add * self.gamma + reward_pool[i]
|
||||
reward_pool[i] = running_add
|
||||
|
||||
# Normalize reward
|
||||
reward_mean = np.mean(reward_pool)
|
||||
reward_std = np.std(reward_pool)
|
||||
for i in range(len(reward_pool)):
|
||||
reward_pool[i] = (reward_pool[i] - reward_mean) / reward_std
|
||||
|
||||
# Gradient Desent
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
for i in range(len(reward_pool)):
|
||||
state = state_pool[i]
|
||||
action = Variable(torch.FloatTensor([action_pool[i]]))
|
||||
reward = reward_pool[i]
|
||||
state = Variable(torch.from_numpy(state).float())
|
||||
probs = self.policy_net(state)
|
||||
m = Bernoulli(probs)
|
||||
loss = -m.log_prob(action) * reward # Negtive score function x reward
|
||||
# print(loss)
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
def save(self,path):
|
||||
torch.save(self.policy_net.state_dict(), path+'pg_checkpoint.pt')
|
||||
def load(self,path):
|
||||
self.policy_net.load_state_dict(torch.load(path+'pg_checkpoint.pt'))
|
||||
Reference in New Issue
Block a user