update projects

This commit is contained in:
johnjim0816
2022-07-31 23:42:12 +08:00
parent e9b3e92141
commit ffab9e3028
236 changed files with 370 additions and 133 deletions

View File

@@ -0,0 +1,27 @@
# Policy Gradient
Policy-based方法是强化学习中与Value-based(比如Q-learning)相对的方法,其目的是对策略本身进行梯度下降,相关基础知识参考[Datawhale-Policy Gradient](https://datawhalechina.github.io/leedeeprl-notes/#/chapter4/chapter4)。
其中REINFORCE是一个最基本的Policy Gradient方法主要解决策略梯度无法直接计算的问题具体原理参考[CSDN-REINFORCE和Reparameterization Trick](https://blog.csdn.net/JohnJim0/article/details/110230703)
## 伪代码
结合REINFORCE原理其伪代码如下
<img src="assets/image-20211016004808604.png" alt="image-20211016004808604" style="zoom:50%;" />
https://pytorch.org/docs/stable/distributions.html
加负号的原因是在公式中应该是实现的梯度上升算法而loss一般使用随机梯度下降的所以加个负号保持一致性。
![img](assets/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pvaG5KaW0w,size_16,color_FFFFFF,t_70-20210428001336032.png)
## 实现
## 参考
[REINFORCE和Reparameterization Trick](https://blog.csdn.net/JohnJim0/article/details/110230703)
[Policy Gradient paper](https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf)
[REINFORCE](https://towardsdatascience.com/policy-gradient-methods-104c783251e0)

Binary file not shown.

After

Width:  |  Height:  |  Size: 208 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

View File

@@ -0,0 +1,89 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:27:44
LastEditor: John
LastEditTime: 2022-02-10 01:25:27
Discription:
Environment:
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Bernoulli
from torch.autograd import Variable
import numpy as np
class MLP(nn.Module):
''' 多层感知机
输入state维度
输出:概率
'''
def __init__(self,input_dim,hidden_dim = 36):
super(MLP, self).__init__()
# 24和36为hidden layer的层数可根据input_dim, n_actions的情况来改变
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim,hidden_dim)
self.fc3 = nn.Linear(hidden_dim, 1) # Prob of Left
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.sigmoid(self.fc3(x))
return x
class PolicyGradient:
def __init__(self, n_states,cfg):
self.gamma = cfg.gamma
self.policy_net = MLP(n_states,hidden_dim=cfg.hidden_dim)
self.optimizer = torch.optim.RMSprop(self.policy_net.parameters(), lr=cfg.lr)
self.batch_size = cfg.batch_size
def choose_action(self,state):
state = torch.from_numpy(state).float()
state = Variable(state)
probs = self.policy_net(state)
m = Bernoulli(probs) # 伯努利分布
action = m.sample()
action = action.data.numpy().astype(int)[0] # 转为标量
return action
def update(self,reward_pool,state_pool,action_pool):
# Discount reward
running_add = 0
for i in reversed(range(len(reward_pool))):
if reward_pool[i] == 0:
running_add = 0
else:
running_add = running_add * self.gamma + reward_pool[i]
reward_pool[i] = running_add
# Normalize reward
reward_mean = np.mean(reward_pool)
reward_std = np.std(reward_pool)
for i in range(len(reward_pool)):
reward_pool[i] = (reward_pool[i] - reward_mean) / reward_std
# Gradient Desent
self.optimizer.zero_grad()
for i in range(len(reward_pool)):
state = state_pool[i]
action = Variable(torch.FloatTensor([action_pool[i]]))
reward = reward_pool[i]
state = Variable(torch.from_numpy(state).float())
probs = self.policy_net(state)
m = Bernoulli(probs)
loss = -m.log_prob(action) * reward # Negtive score function x reward
# print(loss)
loss.backward()
self.optimizer.step()
def save(self,path):
torch.save(self.policy_net.state_dict(), path+'pg_checkpoint.pt')
def load(self,path):
self.policy_net.load_state_dict(torch.load(path+'pg_checkpoint.pt'))

View File

@@ -0,0 +1,143 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:21:53
LastEditor: John
LastEditTime: 2022-07-21 21:44:00
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
parent_path = os.path.dirname(curr_path) # parent path
sys.path.append(parent_path) # add to system path
import gym
import torch
import datetime
import argparse
from itertools import count
from pg import PolicyGradient
from common.utils import save_results, make_dir
from common.utils import plot_rewards
def get_args():
""" Hyperparameters
"""
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--algo_name',default='PolicyGradient',type=str,help="name of algorithm")
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
parser.add_argument('--train_eps',default=300,type=int,help="episodes of training")
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
parser.add_argument('--lr',default=0.01,type=float,help="learning rate")
parser.add_argument('--batch_size',default=8,type=int)
parser.add_argument('--hidden_dim',default=36,type=int)
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/results/' )
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/models/' ) # path to save models
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
args = parser.parse_args()
return args
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env_name)
env.seed(seed)
n_states = env.observation_space.shape[0]
agent = PolicyGradient(n_states,cfg)
return env,agent
def train(cfg,env,agent):
print('Start training!')
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
state_pool = [] # temp states pool per several episodes
action_pool = []
reward_pool = []
rewards = []
ma_rewards = []
for i_ep in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
for _ in count():
action = agent.choose_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action)
ep_reward += reward
if done:
reward = 0
state_pool.append(state)
action_pool.append(float(action))
reward_pool.append(reward)
state = next_state
if done:
print(f'Episode{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}')
break
if i_ep > 0 and i_ep % cfg.batch_size == 0:
agent.update(reward_pool,state_pool,action_pool)
state_pool = []
action_pool = []
reward_pool = []
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('Finish training!')
env.close() # close environment
return rewards, ma_rewards
def test(cfg,env,agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = []
ma_rewards = []
for i_ep in range(cfg.test_eps):
state = env.reset()
ep_reward = 0
for _ in count():
action = agent.choose_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action)
ep_reward += reward
if done:
reward = 0
state = next_state
if done:
print('回合:{}/{}, 奖励:{}'.format(i_ep + 1, cfg.train_eps, ep_reward))
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('完成测试!')
env.close()
return rewards, ma_rewards
if __name__ == "__main__":
cfg = Config()
# 训练
env, agent = env_agent_config(cfg)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=cfg.model_path) # 保存模型
save_results(rewards, ma_rewards, tag='train',
path=cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果
# 测试
env, agent = env_agent_config(cfg)
agent.load(path=cfg.model_path) # 导入模型
rewards, ma_rewards = test(cfg, env, agent)
save_results(rewards, ma_rewards, tag='test',
path=cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, cfg, tag="test") # 画出结果