update projects
This commit is contained in:
162
projects/codes/PPO/ppo2.py
Normal file
162
projects/codes/PPO/ppo2.py
Normal file
@@ -0,0 +1,162 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-23 15:17:42
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-12-31 19:38:33
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import os
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import torch.nn as nn
|
||||
from torch.distributions.categorical import Categorical
|
||||
class PPOMemory:
|
||||
def __init__(self, batch_size):
|
||||
self.states = []
|
||||
self.probs = []
|
||||
self.vals = []
|
||||
self.actions = []
|
||||
self.rewards = []
|
||||
self.dones = []
|
||||
self.batch_size = batch_size
|
||||
def sample(self):
|
||||
batch_step = np.arange(0, len(self.states), self.batch_size)
|
||||
indices = np.arange(len(self.states), dtype=np.int64)
|
||||
np.random.shuffle(indices)
|
||||
batches = [indices[i:i+self.batch_size] for i in batch_step]
|
||||
return np.array(self.states),np.array(self.actions),np.array(self.probs),\
|
||||
np.array(self.vals),np.array(self.rewards),np.array(self.dones),batches
|
||||
|
||||
def push(self, state, action, probs, vals, reward, done):
|
||||
self.states.append(state)
|
||||
self.actions.append(action)
|
||||
self.probs.append(probs)
|
||||
self.vals.append(vals)
|
||||
self.rewards.append(reward)
|
||||
self.dones.append(done)
|
||||
|
||||
def clear(self):
|
||||
self.states = []
|
||||
self.probs = []
|
||||
self.actions = []
|
||||
self.rewards = []
|
||||
self.dones = []
|
||||
self.vals = []
|
||||
class Actor(nn.Module):
|
||||
def __init__(self,n_states, n_actions,
|
||||
hidden_dim):
|
||||
super(Actor, self).__init__()
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, n_actions),
|
||||
nn.Softmax(dim=-1)
|
||||
)
|
||||
def forward(self, state):
|
||||
dist = self.actor(state)
|
||||
dist = Categorical(dist)
|
||||
return dist
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, n_states,hidden_dim):
|
||||
super(Critic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
def forward(self, state):
|
||||
value = self.critic(state)
|
||||
return value
|
||||
class PPO:
|
||||
def __init__(self, n_states, n_actions,cfg):
|
||||
self.gamma = cfg.gamma
|
||||
self.continuous = cfg.continuous
|
||||
self.policy_clip = cfg.policy_clip
|
||||
self.n_epochs = cfg.n_epochs
|
||||
self.gae_lambda = cfg.gae_lambda
|
||||
self.device = cfg.device
|
||||
self.actor = Actor(n_states, n_actions,cfg.hidden_dim).to(self.device)
|
||||
self.critic = Critic(n_states,cfg.hidden_dim).to(self.device)
|
||||
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)
|
||||
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg.critic_lr)
|
||||
self.memory = PPOMemory(cfg.batch_size)
|
||||
self.loss = 0
|
||||
|
||||
def choose_action(self, state):
|
||||
state = np.array([state]) # 先转成数组再转tensor更高效
|
||||
state = torch.tensor(state, dtype=torch.float).to(self.device)
|
||||
dist = self.actor(state)
|
||||
value = self.critic(state)
|
||||
action = dist.sample()
|
||||
probs = torch.squeeze(dist.log_prob(action)).item()
|
||||
if self.continuous:
|
||||
action = torch.tanh(action)
|
||||
else:
|
||||
action = torch.squeeze(action).item()
|
||||
value = torch.squeeze(value).item()
|
||||
return action, probs, value
|
||||
|
||||
def update(self):
|
||||
for _ in range(self.n_epochs):
|
||||
state_arr, action_arr, old_prob_arr, vals_arr,reward_arr, dones_arr, batches = self.memory.sample()
|
||||
values = vals_arr[:]
|
||||
### compute advantage ###
|
||||
advantage = np.zeros(len(reward_arr), dtype=np.float32)
|
||||
for t in range(len(reward_arr)-1):
|
||||
discount = 1
|
||||
a_t = 0
|
||||
for k in range(t, len(reward_arr)-1):
|
||||
a_t += discount*(reward_arr[k] + self.gamma*values[k+1]*\
|
||||
(1-int(dones_arr[k])) - values[k])
|
||||
discount *= self.gamma*self.gae_lambda
|
||||
advantage[t] = a_t
|
||||
advantage = torch.tensor(advantage).to(self.device)
|
||||
### SGD ###
|
||||
values = torch.tensor(values).to(self.device)
|
||||
for batch in batches:
|
||||
states = torch.tensor(state_arr[batch], dtype=torch.float).to(self.device)
|
||||
old_probs = torch.tensor(old_prob_arr[batch]).to(self.device)
|
||||
actions = torch.tensor(action_arr[batch]).to(self.device)
|
||||
dist = self.actor(states)
|
||||
critic_value = self.critic(states)
|
||||
critic_value = torch.squeeze(critic_value)
|
||||
new_probs = dist.log_prob(actions)
|
||||
prob_ratio = new_probs.exp() / old_probs.exp()
|
||||
weighted_probs = advantage[batch] * prob_ratio
|
||||
weighted_clipped_probs = torch.clamp(prob_ratio, 1-self.policy_clip,
|
||||
1+self.policy_clip)*advantage[batch]
|
||||
actor_loss = -torch.min(weighted_probs, weighted_clipped_probs).mean()
|
||||
returns = advantage[batch] + values[batch]
|
||||
critic_loss = (returns-critic_value)**2
|
||||
critic_loss = critic_loss.mean()
|
||||
total_loss = actor_loss + 0.5*critic_loss
|
||||
self.loss = total_loss
|
||||
self.actor_optimizer.zero_grad()
|
||||
self.critic_optimizer.zero_grad()
|
||||
total_loss.backward()
|
||||
self.actor_optimizer.step()
|
||||
self.critic_optimizer.step()
|
||||
self.memory.clear()
|
||||
def save(self,path):
|
||||
actor_checkpoint = os.path.join(path, 'ppo_actor.pt')
|
||||
critic_checkpoint= os.path.join(path, 'ppo_critic.pt')
|
||||
torch.save(self.actor.state_dict(), actor_checkpoint)
|
||||
torch.save(self.critic.state_dict(), critic_checkpoint)
|
||||
def load(self,path):
|
||||
actor_checkpoint = os.path.join(path, 'ppo_actor.pt')
|
||||
critic_checkpoint= os.path.join(path, 'ppo_critic.pt')
|
||||
self.actor.load_state_dict(torch.load(actor_checkpoint))
|
||||
self.critic.load_state_dict(torch.load(critic_checkpoint))
|
||||
|
||||
|
||||
Reference in New Issue
Block a user