update projects
This commit is contained in:
167
projects/codes/GAE/task0_train.py
Normal file
167
projects/codes/GAE/task0_train.py
Normal file
@@ -0,0 +1,167 @@
|
||||
import math
|
||||
import random
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torch.nn.functional as F
|
||||
from torch.distributions import Normal
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加父路径到系统路径sys.path
|
||||
|
||||
use_cuda = torch.cuda.is_available()
|
||||
device = torch.device("cuda" if use_cuda else "cpu")
|
||||
|
||||
from common.multiprocessing_env import SubprocVecEnv
|
||||
|
||||
num_envs = 16
|
||||
env_name = "Pendulum-v0"
|
||||
|
||||
def make_env():
|
||||
def _thunk():
|
||||
env = gym.make(env_name)
|
||||
return env
|
||||
|
||||
return _thunk
|
||||
|
||||
envs = [make_env() for i in range(num_envs)]
|
||||
envs = SubprocVecEnv(envs)
|
||||
|
||||
env = gym.make(env_name)
|
||||
|
||||
def init_weights(m):
|
||||
if isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, mean=0., std=0.1)
|
||||
nn.init.constant_(m.bias, 0.1)
|
||||
|
||||
class ActorCritic(nn.Module):
|
||||
def __init__(self, num_inputs, num_outputs, hidden_size, std=0.0):
|
||||
super(ActorCritic, self).__init__()
|
||||
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(num_inputs, hidden_size),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_size, 1)
|
||||
)
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(num_inputs, hidden_size),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_size, num_outputs),
|
||||
)
|
||||
self.log_std = nn.Parameter(torch.ones(1, num_outputs) * std)
|
||||
|
||||
self.apply(init_weights)
|
||||
|
||||
def forward(self, x):
|
||||
value = self.critic(x)
|
||||
mu = self.actor(x)
|
||||
std = self.log_std.exp().expand_as(mu)
|
||||
dist = Normal(mu, std)
|
||||
return dist, value
|
||||
|
||||
|
||||
def plot(frame_idx, rewards):
|
||||
plt.figure(figsize=(20,5))
|
||||
plt.subplot(131)
|
||||
plt.title('frame %s. reward: %s' % (frame_idx, rewards[-1]))
|
||||
plt.plot(rewards)
|
||||
plt.show()
|
||||
|
||||
def test_env(vis=False):
|
||||
state = env.reset()
|
||||
if vis: env.render()
|
||||
done = False
|
||||
total_reward = 0
|
||||
while not done:
|
||||
state = torch.FloatTensor(state).unsqueeze(0).to(device)
|
||||
dist, _ = model(state)
|
||||
next_state, reward, done, _ = env.step(dist.sample().cpu().numpy()[0])
|
||||
state = next_state
|
||||
if vis: env.render()
|
||||
total_reward += reward
|
||||
return total_reward
|
||||
|
||||
def compute_gae(next_value, rewards, masks, values, gamma=0.99, tau=0.95):
|
||||
values = values + [next_value]
|
||||
gae = 0
|
||||
returns = []
|
||||
for step in reversed(range(len(rewards))):
|
||||
delta = rewards[step] + gamma * values[step + 1] * masks[step] - values[step]
|
||||
gae = delta + gamma * tau * masks[step] * gae
|
||||
returns.insert(0, gae + values[step])
|
||||
return returns
|
||||
|
||||
num_inputs = envs.observation_space.shape[0]
|
||||
num_outputs = envs.action_space.shape[0]
|
||||
|
||||
#Hyper params:
|
||||
hidden_size = 256
|
||||
lr = 3e-2
|
||||
num_steps = 20
|
||||
|
||||
model = ActorCritic(num_inputs, num_outputs, hidden_size).to(device)
|
||||
optimizer = optim.Adam(model.parameters())
|
||||
|
||||
max_frames = 100000
|
||||
frame_idx = 0
|
||||
test_rewards = []
|
||||
|
||||
state = envs.reset()
|
||||
|
||||
while frame_idx < max_frames:
|
||||
|
||||
log_probs = []
|
||||
values = []
|
||||
rewards = []
|
||||
masks = []
|
||||
entropy = 0
|
||||
|
||||
for _ in range(num_steps):
|
||||
state = torch.FloatTensor(state).to(device)
|
||||
dist, value = model(state)
|
||||
|
||||
action = dist.sample()
|
||||
next_state, reward, done, _ = envs.step(action.cpu().numpy())
|
||||
|
||||
log_prob = dist.log_prob(action)
|
||||
entropy += dist.entropy().mean()
|
||||
|
||||
log_probs.append(log_prob)
|
||||
values.append(value)
|
||||
rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device))
|
||||
masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device))
|
||||
|
||||
state = next_state
|
||||
frame_idx += 1
|
||||
|
||||
if frame_idx % 1000 == 0:
|
||||
test_rewards.append(np.mean([test_env() for _ in range(10)]))
|
||||
print(test_rewards[-1])
|
||||
# plot(frame_idx, test_rewards)
|
||||
|
||||
next_state = torch.FloatTensor(next_state).to(device)
|
||||
_, next_value = model(next_state)
|
||||
returns = compute_gae(next_value, rewards, masks, values)
|
||||
|
||||
log_probs = torch.cat(log_probs)
|
||||
returns = torch.cat(returns).detach()
|
||||
values = torch.cat(values)
|
||||
|
||||
advantage = returns - values
|
||||
|
||||
actor_loss = -(log_probs * advantage.detach()).mean()
|
||||
critic_loss = advantage.pow(2).mean()
|
||||
|
||||
loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
Reference in New Issue
Block a user