update projects

This commit is contained in:
johnjim0816
2022-07-31 23:42:12 +08:00
parent e9b3e92141
commit ffab9e3028
236 changed files with 370 additions and 133 deletions

View File

@@ -0,0 +1,39 @@
食用本篇之前需要有DQN算法的基础参考[DQN算法实战](../DQN)。
## 原理简介
Double-DQN是2016年提出的算法灵感源自2010年的Double-Qlearning可参考论文[Deep Reinforcement Learning with Double Q-learning](https://arxiv.org/abs/1509.06461)。
跟Nature DQN一样Double-DQN也用了两个网络一个当前网络(对应用$Q$表示),一个目标网络(对应一般用$Q'$表示,为方便区分,以下用$Q_{tar}$代替)。我们先回忆一下,对于非终止状态,目标$Q_{tar}$值计算如下
![在这里插入图片描述](assets/20201222145725907.png)
而在Double-DQN中不再是直接从目标$Q_{tar}$网络中选择各个动作中的最大$Q_{tar}$值,而是先从当前$Q$网络选择$Q$值最大对应的动作,然后代入到目标网络中计算对应的值:
![在这里插入图片描述](assets/20201222150225327.png)
Double-DQN的好处是Nature DQN中使用max虽然可以快速让Q值向可能的优化目标靠拢但是很容易过犹不及导致过度估计(Over Estimation),所谓过度估计就是最终我们得到的算法模型有很大的偏差(bias)。为了解决这个问题, DDQN通过解耦目标Q值动作的选择和目标Q值的计算这两步来达到消除过度估计的问题感兴趣可以阅读原论文。
伪代码如下:
![在这里插入图片描述](assets/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pvaG5KaW0w,size_16,color_FFFFFF,t_70.png)
当然也可以两个网络可以同时为当前网络和目标网络,如下:
![在这里插入图片描述](assets/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pvaG5KaW0w,size_16,color_FFFFFF,t_70-20210328110837146.png)
或者这样更好理解如何同时为当前网络和目标网络:
![在这里插入图片描述](assets/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pvaG5KaW0w,size_16,color_FFFFFF,t_70-20210328110837157.png)
## 代码实战
完整程序见[github](https://github.com/JohnJim0816/reinforcement-learning-tutorials/tree/master/DoubleDQN)。结合上面的原理其实Double DQN改进来很简单基本只需要在```update```中修改几行代码,如下:
```python
'''以下是Nature DQN的q_target计算方式
next_q_state_value = self.target_net(
next_state_batch).max(1)[0].detach() # # 计算所有next states的Q'(s_{t+1})的最大值Q'为目标网络的q函数,比如tensor([ 0.0060, -0.0171,...,])
#计算 q_target
#对于终止状态此时done_batch[0]=1, 对应的expected_q_value等于reward
q_target = reward_batch + self.gamma * next_q_state_value * (1-done_batch[0])
'''
'''以下是Double DQNq_target计算方式与NatureDQN稍有不同'''
next_target_values = self.target_net(
next_state_batch)
#选出Q(s_t, a)对应的action代入到next_target_values获得target net对应的next_q_value即Q(s_t|a=argmax Q(s_t, a))
next_target_q_value = next_target_values.gather(1, torch.max(next_q_values, 1)[1].unsqueeze(1)).squeeze(1)
q_target = reward_batch + self.gamma * next_target_q_value * (1-done_batch[0])
```
reward变化结果如下
![在这里插入图片描述](assets/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pvaG5KaW0w,size_16,color_FFFFFF,t_70-20210328110837128.png)
其中下边蓝色和红色分别表示Double DQN和Nature DQN在训练中的reward变化图而上面蓝色和绿色则表示Double DQN和Nature DQN在测试中的reward变化图。

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

View File

@@ -0,0 +1,160 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:50:49
@LastEditor: John
LastEditTime: 2022-07-21 00:08:26
@Discription:
@Environment: python 3.7.7
'''
'''off-policy
'''
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import random
import math
import numpy as np
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity # 经验回放的容量
self.buffer = [] # 缓冲区
self.position = 0
def push(self, state, action, reward, next_state, done):
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
'''
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
return state, action, reward, next_state, done
def __len__(self):
''' 返回当前存储的量
'''
return len(self.buffer)
class MLP(nn.Module):
def __init__(self, n_states,n_actions,hidden_dim=128):
""" 初始化q网络为全连接网络
n_states: 输入的特征数即环境的状态维度
n_actions: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
def forward(self, x):
# 各层对应的激活函数
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
class DoubleDQN:
def __init__(self, n_states, n_actions, cfg):
self.n_actions = n_actions # 总的动作个数
self.device = torch.device(cfg.device) # 设备cpu或gpu等
self.gamma = cfg.gamma
# e-greedy策略相关参数
self.actions_count = 0
self.epsilon_start = cfg.epsilon_start
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.batch_size = cfg.batch_size
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
# target_net copy from policy_net
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
target_param.data.copy_(param.data)
# self.target_net.eval() # 不启用 BatchNormalization 和 Dropout
# 可查parameters()与state_dict()的区别前者require_grad=True
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
self.loss = 0
self.memory = ReplayBuffer(cfg.memory_capacity)
def choose_action(self, state):
'''选择动作
'''
self.actions_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * math.exp(-1. * self.actions_count / self.epsilon_decay)
if random.random() > self.epsilon:
with torch.no_grad():
# 先转为张量便于丢给神经网络,state元素数据原本为float64
# 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
state = torch.tensor(
[state], device=self.device, dtype=torch.float32)
# 如tensor([[-0.0798, -0.0079]], grad_fn=<AddmmBackward>)
q_value = self.policy_net(state)
# tensor.max(1)返回每行的最大值以及对应的下标,
# 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
# 所以tensor.max(1)[1]返回最大值对应的下标即action
action = q_value.max(1)[1].item()
else:
action = random.randrange(self.n_actions)
return action
def update(self):
if len(self.memory) < self.batch_size:
return
# 从memory中随机采样transition
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
self.batch_size)
# convert to tensor
state_batch = torch.tensor(
state_batch, device=self.device, dtype=torch.float)
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(
1) # 例如tensor([[1],...,[0]])
reward_batch = torch.tensor(
reward_batch, device=self.device, dtype=torch.float) # tensor([1., 1.,...,1])
next_state_batch = torch.tensor(
next_state_batch, device=self.device, dtype=torch.float)
done_batch = torch.tensor(np.float32(
done_batch), device=self.device) # 将bool转为float然后转为张量
# 计算当前(s_t,a)对应的Q(s_t, a)
q_values = self.policy_net(state_batch)
next_q_values = self.policy_net(next_state_batch)
# 代入当前选择的action得到Q(s_t|a=a_t)
q_value = q_values.gather(dim=1, index=action_batch)
'''以下是Nature DQN的q_target计算方式
# 计算所有next states的Q'(s_{t+1})的最大值Q'为目标网络的q函数
next_q_state_value = self.target_net(
next_state_batch).max(1)[0].detach() # 比如tensor([ 0.0060, -0.0171,...,])
# 计算 q_target
# 对于终止状态此时done_batch[0]=1, 对应的expected_q_value等于reward
q_target = reward_batch + self.gamma * next_q_state_value * (1-done_batch[0])
'''
'''以下是Double DQN q_target计算方式与NatureDQN稍有不同'''
next_target_values = self.target_net(
next_state_batch)
# 选出Q(s_t, a)对应的action代入到next_target_values获得target net对应的next_q_value即Q(s_t|a=argmax Q(s_t, a))
next_target_q_value = next_target_values.gather(1, torch.max(next_q_values, 1)[1].unsqueeze(1)).squeeze(1)
q_target = reward_batch + self.gamma * next_target_q_value * (1-done_batch)
self.loss = nn.MSELoss()(q_value, q_target.unsqueeze(1)) # 计算 均方误差loss
# 优化模型
self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step
# loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分
self.loss.backward()
for param in self.policy_net.parameters(): # clip防止梯度爆炸
param.grad.data.clamp_(-1, 1)
self.optimizer.step() # 更新模型
def save(self,path):
torch.save(self.target_net.state_dict(), path+'checkpoint.pth')
def load(self,path):
self.target_net.load_state_dict(torch.load(path+'checkpoint.pth'))
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
param.data.copy_(target_param.data)

View File

@@ -0,0 +1,19 @@
{
"algo_name": "DoubleDQN",
"env_name": "CartPole-v0",
"train_eps": 200,
"test_eps": 20,
"gamma": 0.99,
"epsilon_start": 0.95,
"epsilon_end": 0.01,
"epsilon_decay": 500,
"lr": 0.0001,
"memory_capacity": 100000,
"batch_size": 64,
"target_update": 2,
"hidden_dim": 256,
"device": "cuda",
"result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DoubleDQN/outputs/CartPole-v0/20220721-215416/results/",
"model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DoubleDQN/outputs/CartPole-v0/20220721-215416/models/",
"save_fig": true
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

View File

@@ -0,0 +1,138 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-11-07 18:10:37
LastEditor: JiangJi
LastEditTime: 2022-07-21 21:52:31
Discription:
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
parent_path = os.path.dirname(curr_path) # parent path
sys.path.append(parent_path) # add to system path
import gym
import torch
import datetime
import argparse
from common.utils import save_results,make_dir
from common.utils import plot_rewards,save_args
from DoubleDQN.double_dqn import DoubleDQN
def get_args():
""" Hyperparameters
"""
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--algo_name',default='DoubleDQN',type=str,help="name of algorithm")
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon")
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
parser.add_argument('--batch_size',default=64,type=int)
parser.add_argument('--target_update',default=2,type=int)
parser.add_argument('--hidden_dim',default=256,type=int)
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/results/' )
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/models/' ) # path to save models
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
args = parser.parse_args()
return args
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env_name)
env.seed(seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
agent = DoubleDQN(n_states,n_actions,cfg)
return env,agent
def train(cfg,env,agent):
print('Start training!')
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.train_eps):
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
while True:
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done)
state = next_state
agent.update()
if done:
break
if i_ep % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
if (i_ep+1)%10 == 0:
print(f'Env:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}')
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('Finish training!')
return {'rewards':rewards,'ma_rewards':ma_rewards}
def test(cfg,env,agent):
print('Start testing')
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
############# 由于测试不需要使用epsilon-greedy策略所以相应的值设置为0 ###############
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
################################################################################
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.test_eps):
state = env.reset()
ep_reward = 0
while True:
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
state = next_state
ep_reward += reward
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
print(f"Epside:{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.1f}")
print('Finish testing!')
return {'rewards':rewards,'ma_rewards':ma_rewards}
if __name__ == "__main__":
cfg = get_args()
print(cfg.device)
# training
env,agent = env_agent_config(cfg,seed=1)
res_dic = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
save_args(cfg)
agent.save(path=cfg.model_path)
save_results(res_dic, tag='train',
path=cfg.result_path)
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train")
# testing
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
res_dic = test(cfg,env,agent)
save_results(res_dic, tag='test',
path=cfg.result_path)
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="test")