add MonteCarlo
This commit is contained in:
88
codes/MonteCarlo/main.py
Normal file
88
codes/MonteCarlo/main.py
Normal file
@@ -0,0 +1,88 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-11 14:26:44
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-12 16:15:46
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
sys.path.append(os.getcwd())
|
||||
import argparse
|
||||
import datetime
|
||||
|
||||
from envs.racetrack_env import RacetrackEnv
|
||||
from MonteCarlo.agent import FisrtVisitMC
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||||
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(RESULT_PATH)
|
||||
|
||||
class MCConfig:
|
||||
def __init__(self):
|
||||
self.epsilon = 0.15 # epsilon: The probability to select a random action .
|
||||
self.gamma = 0.9 # gamma: Gamma discount factor.
|
||||
self.n_episodes = 300
|
||||
self.n_steps = 2000
|
||||
|
||||
def get_mc_args():
|
||||
'''set parameters
|
||||
'''
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--epsilon", default=0.15, type=float) # epsilon: The probability to select a random action . float between 0 and 1.
|
||||
parser.add_argument("--gamma", default=0.9, type=float) # gamma: Gamma discount factor.
|
||||
parser.add_argument("--n_episodes", default=150, type=int)
|
||||
parser.add_argument("--n_steps", default=2000, type=int)
|
||||
mc_cfg = parser.parse_args()
|
||||
return mc_cfg
|
||||
|
||||
|
||||
|
||||
def mc_train(cfg,env,agent):
|
||||
rewards = []
|
||||
ma_rewards = [] # moving average rewards
|
||||
for i_episode in range(cfg.n_episodes):
|
||||
one_ep_transition = []
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
# while True:
|
||||
for t in range(cfg.n_steps):
|
||||
action = agent.choose_action(state)
|
||||
next_state, reward, done = env.step(action)
|
||||
ep_reward+=reward
|
||||
one_ep_transition.append((state, action, reward))
|
||||
state = next_state
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
agent.update(one_ep_transition)
|
||||
if (i_episode+1)%10==0:
|
||||
print("Episode:{}/{}: Reward:{}".format(i_episode+1, mc_cfg.n_episodes,ep_reward))
|
||||
return rewards,ma_rewards
|
||||
if __name__ == "__main__":
|
||||
mc_cfg = MCConfig()
|
||||
env = RacetrackEnv()
|
||||
n_actions=9
|
||||
agent = FisrtVisitMC(n_actions,mc_cfg)
|
||||
rewards,ma_rewards= mc_train(mc_cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",algo = "On-Policy First-Visit MC Control",path=RESULT_PATH)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user