This commit is contained in:
johnjim0816
2021-04-28 22:11:22 +08:00
parent e4690ac89f
commit ed7b60fd5b
73 changed files with 502 additions and 187 deletions

89
codes/TD3/task0_eval.py Normal file
View File

@@ -0,0 +1,89 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-04-23 20:36:23
LastEditor: JiangJi
LastEditTime: 2021-04-23 20:37:22
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path=os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import torch
import gym
import numpy as np
import datetime
from TD3.agent import TD3
from common.plot import plot_rewards
from common.utils import save_results,make_dir
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
class TD3Config:
def __init__(self) -> None:
self.algo = 'TD3 and Random'
self.env = 'HalfCheetah-v2'
self.seed = 0
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
self.start_timestep = 25e3 # Time steps initial random policy is used
self.eval_freq = 5e3 # How often (time steps) we evaluate
self.max_timestep = 200000 # Max time steps to run environment
self.expl_noise = 0.1 # Std of Gaussian exploration noise
self.batch_size = 256 # Batch size for both actor and critic
self.gamma = 0.99 # gamma factor
self.lr = 0.0005 # Target network update rate
self.policy_noise = 0.2 # Noise added to target policy during critic update
self.noise_clip = 0.5 # Range to clip target policy noise
self.policy_freq = 2 # Frequency of delayed policy updates
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Runs policy for X episodes and returns average reward
# A fixed seed is used for the eval environment
def eval(env_name,agent, seed, eval_episodes=50):
eval_env = gym.make(env_name)
eval_env.seed(seed + 100)
rewards,ma_rewards =[],[]
for i_episode in range(eval_episodes):
ep_reward = 0
state, done = eval_env.reset(), False
while not done:
eval_env.render()
action = agent.choose_action(np.array(state))
state, reward, done, _ = eval_env.step(action)
ep_reward += reward
print(f"Episode:{i_episode+1}, Reward:{ep_reward:.3f}")
rewards.append(ep_reward)
# 计算滑动窗口的reward
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
return rewards,ma_rewards
if __name__ == "__main__":
cfg = TD3Config()
env = gym.make(cfg.env)
env.seed(cfg.seed) # Set seeds
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
td3= TD3(state_dim,action_dim,max_action,cfg)
cfg.model_path = './TD3/results/HalfCheetah-v2/20210416-130341/models/'
td3.load(cfg.model_path)
td3_rewards,td3_ma_rewards = eval(cfg.env,td3,cfg.seed)
make_dir(cfg.result_path,cfg.model_path)
save_results(td3_rewards,td3_ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards({'td3_rewards':td3_rewards,'td3_ma_rewards':td3_ma_rewards,},tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
# cfg.result_path = './TD3/results/HalfCheetah-v2/20210416-130341/'
# agent.load(cfg.result_path)
# eval(cfg.env,agent, cfg.seed)