update
This commit is contained in:
170
codes/TD3/agent.py
Normal file
170
codes/TD3/agent.py
Normal file
@@ -0,0 +1,170 @@
|
||||
import copy
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from TD3.memory import ReplayBuffer
|
||||
|
||||
|
||||
|
||||
# Implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3)
|
||||
# Paper: https://arxiv.org/abs/1802.09477
|
||||
|
||||
|
||||
class Actor(nn.Module):
|
||||
def __init__(self, state_dim, action_dim, max_action):
|
||||
super(Actor, self).__init__()
|
||||
|
||||
self.l1 = nn.Linear(state_dim, 256)
|
||||
self.l2 = nn.Linear(256, 256)
|
||||
self.l3 = nn.Linear(256, action_dim)
|
||||
|
||||
self.max_action = max_action
|
||||
|
||||
|
||||
def forward(self, state):
|
||||
a = F.relu(self.l1(state))
|
||||
a = F.relu(self.l2(a))
|
||||
return self.max_action * torch.tanh(self.l3(a))
|
||||
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, state_dim, action_dim):
|
||||
super(Critic, self).__init__()
|
||||
|
||||
# Q1 architecture
|
||||
self.l1 = nn.Linear(state_dim + action_dim, 256)
|
||||
self.l2 = nn.Linear(256, 256)
|
||||
self.l3 = nn.Linear(256, 1)
|
||||
|
||||
# Q2 architecture
|
||||
self.l4 = nn.Linear(state_dim + action_dim, 256)
|
||||
self.l5 = nn.Linear(256, 256)
|
||||
self.l6 = nn.Linear(256, 1)
|
||||
|
||||
|
||||
def forward(self, state, action):
|
||||
sa = torch.cat([state, action], 1)
|
||||
|
||||
q1 = F.relu(self.l1(sa))
|
||||
q1 = F.relu(self.l2(q1))
|
||||
q1 = self.l3(q1)
|
||||
|
||||
q2 = F.relu(self.l4(sa))
|
||||
q2 = F.relu(self.l5(q2))
|
||||
q2 = self.l6(q2)
|
||||
return q1, q2
|
||||
|
||||
|
||||
def Q1(self, state, action):
|
||||
sa = torch.cat([state, action], 1)
|
||||
|
||||
q1 = F.relu(self.l1(sa))
|
||||
q1 = F.relu(self.l2(q1))
|
||||
q1 = self.l3(q1)
|
||||
return q1
|
||||
|
||||
|
||||
class TD3(object):
|
||||
def __init__(
|
||||
self,
|
||||
state_dim,
|
||||
action_dim,
|
||||
max_action,
|
||||
cfg,
|
||||
):
|
||||
self.max_action = max_action
|
||||
self.gamma = cfg.gamma
|
||||
self.lr = cfg.lr
|
||||
self.policy_noise = cfg.policy_noise
|
||||
self.noise_clip = cfg.noise_clip
|
||||
self.policy_freq = cfg.policy_freq
|
||||
self.batch_size = cfg.batch_size
|
||||
self.device = cfg.device
|
||||
self.total_it = 0
|
||||
|
||||
self.actor = Actor(state_dim, action_dim, max_action).to(self.device)
|
||||
self.actor_target = copy.deepcopy(self.actor)
|
||||
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=3e-4)
|
||||
|
||||
self.critic = Critic(state_dim, action_dim).to(self.device)
|
||||
self.critic_target = copy.deepcopy(self.critic)
|
||||
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=3e-4)
|
||||
self.memory = ReplayBuffer(state_dim, action_dim)
|
||||
|
||||
|
||||
|
||||
|
||||
def choose_action(self, state):
|
||||
state = torch.FloatTensor(state.reshape(1, -1)).to(self.device)
|
||||
return self.actor(state).cpu().data.numpy().flatten()
|
||||
|
||||
|
||||
def update(self):
|
||||
self.total_it += 1
|
||||
|
||||
# Sample replay buffer
|
||||
state, action, next_state, reward, not_done = self.memory.sample(self.batch_size)
|
||||
|
||||
with torch.no_grad():
|
||||
# Select action according to policy and add clipped noise
|
||||
noise = (
|
||||
torch.randn_like(action) * self.policy_noise
|
||||
).clamp(-self.noise_clip, self.noise_clip)
|
||||
|
||||
next_action = (
|
||||
self.actor_target(next_state) + noise
|
||||
).clamp(-self.max_action, self.max_action)
|
||||
|
||||
# Compute the target Q value
|
||||
target_Q1, target_Q2 = self.critic_target(next_state, next_action)
|
||||
target_Q = torch.min(target_Q1, target_Q2)
|
||||
target_Q = reward + not_done * self.gamma * target_Q
|
||||
|
||||
# Get current Q estimates
|
||||
current_Q1, current_Q2 = self.critic(state, action)
|
||||
|
||||
# Compute critic loss
|
||||
critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q)
|
||||
|
||||
# Optimize the critic
|
||||
self.critic_optimizer.zero_grad()
|
||||
critic_loss.backward()
|
||||
self.critic_optimizer.step()
|
||||
|
||||
# Delayed policy updates
|
||||
if self.total_it % self.policy_freq == 0:
|
||||
|
||||
# Compute actor losse
|
||||
actor_loss = -self.critic.Q1(state, self.actor(state)).mean()
|
||||
|
||||
# Optimize the actor
|
||||
self.actor_optimizer.zero_grad()
|
||||
actor_loss.backward()
|
||||
self.actor_optimizer.step()
|
||||
|
||||
# Update the frozen target models
|
||||
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
|
||||
target_param.data.copy_(self.lr * param.data + (1 - self.lr) * target_param.data)
|
||||
|
||||
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
|
||||
target_param.data.copy_(self.lr * param.data + (1 - self.lr) * target_param.data)
|
||||
|
||||
|
||||
def save(self, path):
|
||||
torch.save(self.critic.state_dict(), path + "td3_critic")
|
||||
torch.save(self.critic_optimizer.state_dict(), path + "td3_critic_optimizer")
|
||||
|
||||
torch.save(self.actor.state_dict(), path + "td3_actor")
|
||||
torch.save(self.actor_optimizer.state_dict(), path + "td3_actor_optimizer")
|
||||
|
||||
|
||||
def load(self, path):
|
||||
self.critic.load_state_dict(torch.load(path + "td3_critic"))
|
||||
self.critic_optimizer.load_state_dict(torch.load(path + "td3_critic_optimizer"))
|
||||
self.critic_target = copy.deepcopy(self.critic)
|
||||
|
||||
self.actor.load_state_dict(torch.load(path + "td3_actor"))
|
||||
self.actor_optimizer.load_state_dict(torch.load(path + "td3_actor_optimizer"))
|
||||
self.actor_target = copy.deepcopy(self.actor)
|
||||
|
||||
@@ -1,14 +1,169 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 23:38:13
|
||||
@LastEditor: John
|
||||
@LastEditTime: 2020-06-11 23:38:31
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
import torch
|
||||
import gym
|
||||
import numpy as np
|
||||
import datetime
|
||||
|
||||
|
||||
from TD3.agent import TD3
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results,make_dir
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
|
||||
|
||||
class TD3Config:
|
||||
def __init__(self) -> None:
|
||||
self.algo = 'TD3'
|
||||
self.env = 'HalfCheetah-v2'
|
||||
self.seed = 0
|
||||
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/' # path to save results
|
||||
self.start_timestep = 25e3 # Time steps initial random policy is used
|
||||
self.eval_freq = 5e3 # How often (time steps) we evaluate
|
||||
# self.train_eps = 800
|
||||
self.max_timestep = 1600000 # Max time steps to run environment
|
||||
self.expl_noise = 0.1 # Std of Gaussian exploration noise
|
||||
self.batch_size = 256 # Batch size for both actor and critic
|
||||
self.gamma = 0.99 # gamma factor
|
||||
self.lr = 0.0005 # Target network update rate
|
||||
self.policy_noise = 0.2 # Noise added to target policy during critic update
|
||||
self.noise_clip = 0.5 # Range to clip target policy noise
|
||||
self.policy_freq = 2 # Frequency of delayed policy updates
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Runs policy for X episodes and returns average reward
|
||||
# A fixed seed is used for the eval environment
|
||||
def eval(env,agent, seed, eval_episodes=10):
|
||||
eval_env = gym.make(env)
|
||||
eval_env.seed(seed + 100)
|
||||
avg_reward = 0.
|
||||
for _ in range(eval_episodes):
|
||||
state, done = eval_env.reset(), False
|
||||
while not done:
|
||||
# eval_env.render()
|
||||
action = agent.choose_action(np.array(state))
|
||||
state, reward, done, _ = eval_env.step(action)
|
||||
avg_reward += reward
|
||||
avg_reward /= eval_episodes
|
||||
print("---------------------------------------")
|
||||
print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}")
|
||||
print("---------------------------------------")
|
||||
return avg_reward
|
||||
|
||||
def train(cfg,env,agent):
|
||||
# Evaluate untrained policy
|
||||
evaluations = [eval(cfg.env,agent, cfg.seed)]
|
||||
state, done = env.reset(), False
|
||||
ep_reward = 0
|
||||
ep_timesteps = 0
|
||||
episode_num = 0
|
||||
rewards = []
|
||||
ma_rewards = [] # moveing average reward
|
||||
for t in range(int(cfg.max_timestep)):
|
||||
ep_timesteps += 1
|
||||
# Select action randomly or according to policy
|
||||
if t < cfg.start_timestep:
|
||||
action = env.action_space.sample()
|
||||
else:
|
||||
action = (
|
||||
agent.choose_action(np.array(state))
|
||||
+ np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
|
||||
).clip(-max_action, max_action)
|
||||
# Perform action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
done_bool = float(done) if ep_timesteps < env._max_episode_steps else 0
|
||||
# Store data in replay buffer
|
||||
agent.memory.push(state, action, next_state, reward, done_bool)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
# Train agent after collecting sufficient data
|
||||
if t >= cfg.start_timestep:
|
||||
agent.update()
|
||||
if done:
|
||||
# +1 to account for 0 indexing. +0 on ep_timesteps since it will increment +1 even if done=True
|
||||
print(f"Episode:{episode_num+1}, Episode T:{ep_timesteps}, Reward:{ep_reward:.3f}")
|
||||
# Reset environment
|
||||
state, done = env.reset(), False
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动窗口的reward
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
ep_reward = 0
|
||||
ep_timesteps = 0
|
||||
episode_num += 1
|
||||
# Evaluate episode
|
||||
if (t + 1) % cfg.eval_freq == 0:
|
||||
evaluations.append(eval(cfg.env,agent, cfg.seed))
|
||||
return rewards, ma_rewards
|
||||
# def train(cfg,env,agent):
|
||||
# evaluations = [eval(cfg.env,agent,cfg.seed)]
|
||||
# ep_reward = 0
|
||||
# tot_timestep = 0
|
||||
# rewards = []
|
||||
# ma_rewards = [] # moveing average reward
|
||||
# for i_ep in range(int(cfg.train_eps)):
|
||||
# state, done = env.reset(), False
|
||||
# ep_reward = 0
|
||||
# ep_timestep = 0
|
||||
# while not done:
|
||||
# ep_timestep += 1
|
||||
# tot_timestep +=1
|
||||
# # Select action randomly or according to policy
|
||||
# if tot_timestep < cfg.start_timestep:
|
||||
# action = env.action_space.sample()
|
||||
# else:
|
||||
# action = (
|
||||
# agent.choose_action(np.array(state))
|
||||
# + np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
|
||||
# ).clip(-max_action, max_action)
|
||||
# # action = (
|
||||
# # agent.choose_action(np.array(state))
|
||||
# # + np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
|
||||
# # ).clip(-max_action, max_action)
|
||||
# # Perform action
|
||||
# next_state, reward, done, _ = env.step(action)
|
||||
# done_bool = float(done) if ep_timestep < env._max_episode_steps else 0
|
||||
|
||||
# # Store data in replay buffer
|
||||
# agent.memory.push(state, action, next_state, reward, done_bool)
|
||||
# state = next_state
|
||||
# ep_reward += reward
|
||||
# # Train agent after collecting sufficient data
|
||||
# if tot_timestep >= cfg.start_timestep:
|
||||
# agent.update()
|
||||
# print(f"Episode:{i_ep}/{cfg.train_eps}, Episode Timestep:{ep_timestep}, Reward:{ep_reward:.3f}")
|
||||
# rewards.append(ep_reward)
|
||||
# # 计算滑动窗口的reward
|
||||
# if ma_rewards:
|
||||
# ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
# else:
|
||||
# ma_rewards.append(ep_reward)
|
||||
# # Evaluate episode
|
||||
# if (i_ep+1) % cfg.eval_freq == 0:
|
||||
# evaluations.append(eval(cfg.env,agent, cfg.seed))
|
||||
# return rewards,ma_rewards
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
cfg = TD3Config()
|
||||
env = gym.make(cfg.env)
|
||||
env.seed(cfg.seed) # Set seeds
|
||||
torch.manual_seed(cfg.seed)
|
||||
np.random.seed(cfg.seed)
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.shape[0]
|
||||
max_action = float(env.action_space.high[0])
|
||||
agent = TD3(state_dim,action_dim,max_action,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
make_dir(cfg.result_path)
|
||||
agent.save(path=cfg.result_path)
|
||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
|
||||
|
||||
|
||||
@@ -1,34 +1,44 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-10 15:27:16
|
||||
@LastEditor: John
|
||||
@LastEditTime: 2020-06-11 21:04:50
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-04-13 11:00:13
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-04-15 01:25:14
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import random
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
class ReplayBuffer:
|
||||
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity
|
||||
self.buffer = []
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
batch = random.sample(self.buffer, batch_size)
|
||||
state, action, reward, next_state, done = map(np.stack, zip(*batch))
|
||||
return state, action, reward, next_state, done
|
||||
|
||||
def __len__(self):
|
||||
return len(self.buffer)
|
||||
|
||||
class ReplayBuffer(object):
|
||||
def __init__(self, state_dim, action_dim, max_size=int(1e6)):
|
||||
self.max_size = max_size
|
||||
self.ptr = 0
|
||||
self.size = 0
|
||||
self.state = np.zeros((max_size, state_dim))
|
||||
self.action = np.zeros((max_size, action_dim))
|
||||
self.next_state = np.zeros((max_size, state_dim))
|
||||
self.reward = np.zeros((max_size, 1))
|
||||
self.not_done = np.zeros((max_size, 1))
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
def push(self, state, action, next_state, reward, done):
|
||||
self.state[self.ptr] = state
|
||||
self.action[self.ptr] = action
|
||||
self.next_state[self.ptr] = next_state
|
||||
self.reward[self.ptr] = reward
|
||||
self.not_done[self.ptr] = 1. - done
|
||||
self.ptr = (self.ptr + 1) % self.max_size
|
||||
self.size = min(self.size + 1, self.max_size)
|
||||
|
||||
def sample(self, batch_size):
|
||||
ind = np.random.randint(0, self.size, size=batch_size)
|
||||
return (
|
||||
torch.FloatTensor(self.state[ind]).to(self.device),
|
||||
torch.FloatTensor(self.action[ind]).to(self.device),
|
||||
torch.FloatTensor(self.next_state[ind]).to(self.device),
|
||||
torch.FloatTensor(self.reward[ind]).to(self.device),
|
||||
torch.FloatTensor(self.not_done[ind]).to(self.device)
|
||||
)
|
||||
Binary file not shown.
Binary file not shown.
|
After Width: | Height: | Size: 42 KiB |
Binary file not shown.
BIN
codes/TD3/results/HalfCheetah-v2/20210416-003720/td3_actor
Normal file
BIN
codes/TD3/results/HalfCheetah-v2/20210416-003720/td3_actor
Normal file
Binary file not shown.
Binary file not shown.
BIN
codes/TD3/results/HalfCheetah-v2/20210416-003720/td3_critic
Normal file
BIN
codes/TD3/results/HalfCheetah-v2/20210416-003720/td3_critic
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
After Width: | Height: | Size: 55 KiB |
BIN
codes/TD3/results/Reacher-v2/20210415-021952/rewards_train.npy
Normal file
BIN
codes/TD3/results/Reacher-v2/20210415-021952/rewards_train.npy
Normal file
Binary file not shown.
BIN
codes/TD3/results/Reacher-v2/20210415-021952/td3_actor
Normal file
BIN
codes/TD3/results/Reacher-v2/20210415-021952/td3_actor
Normal file
Binary file not shown.
BIN
codes/TD3/results/Reacher-v2/20210415-021952/td3_actor_optimizer
Normal file
BIN
codes/TD3/results/Reacher-v2/20210415-021952/td3_actor_optimizer
Normal file
Binary file not shown.
BIN
codes/TD3/results/Reacher-v2/20210415-021952/td3_critic
Normal file
BIN
codes/TD3/results/Reacher-v2/20210415-021952/td3_critic
Normal file
Binary file not shown.
Binary file not shown.
Reference in New Issue
Block a user