170 lines
5.8 KiB
Python
170 lines
5.8 KiB
Python
import sys,os
|
|
curr_path = os.path.dirname(__file__)
|
|
parent_path=os.path.dirname(curr_path)
|
|
sys.path.append(parent_path) # add current terminal path to sys.path
|
|
|
|
import torch
|
|
import gym
|
|
import numpy as np
|
|
import datetime
|
|
|
|
|
|
from TD3.agent import TD3
|
|
from common.plot import plot_rewards
|
|
from common.utils import save_results,make_dir
|
|
|
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
|
|
|
|
|
class TD3Config:
|
|
def __init__(self) -> None:
|
|
self.algo = 'TD3'
|
|
self.env = 'HalfCheetah-v2'
|
|
self.seed = 0
|
|
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/' # path to save results
|
|
self.start_timestep = 25e3 # Time steps initial random policy is used
|
|
self.eval_freq = 5e3 # How often (time steps) we evaluate
|
|
# self.train_eps = 800
|
|
self.max_timestep = 1600000 # Max time steps to run environment
|
|
self.expl_noise = 0.1 # Std of Gaussian exploration noise
|
|
self.batch_size = 256 # Batch size for both actor and critic
|
|
self.gamma = 0.99 # gamma factor
|
|
self.lr = 0.0005 # Target network update rate
|
|
self.policy_noise = 0.2 # Noise added to target policy during critic update
|
|
self.noise_clip = 0.5 # Range to clip target policy noise
|
|
self.policy_freq = 2 # Frequency of delayed policy updates
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
# Runs policy for X episodes and returns average reward
|
|
# A fixed seed is used for the eval environment
|
|
def eval(env,agent, seed, eval_episodes=10):
|
|
eval_env = gym.make(env)
|
|
eval_env.seed(seed + 100)
|
|
avg_reward = 0.
|
|
for _ in range(eval_episodes):
|
|
state, done = eval_env.reset(), False
|
|
while not done:
|
|
# eval_env.render()
|
|
action = agent.choose_action(np.array(state))
|
|
state, reward, done, _ = eval_env.step(action)
|
|
avg_reward += reward
|
|
avg_reward /= eval_episodes
|
|
print("---------------------------------------")
|
|
print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}")
|
|
print("---------------------------------------")
|
|
return avg_reward
|
|
|
|
def train(cfg,env,agent):
|
|
# Evaluate untrained policy
|
|
evaluations = [eval(cfg.env,agent, cfg.seed)]
|
|
state, done = env.reset(), False
|
|
ep_reward = 0
|
|
ep_timesteps = 0
|
|
episode_num = 0
|
|
rewards = []
|
|
ma_rewards = [] # moveing average reward
|
|
for t in range(int(cfg.max_timestep)):
|
|
ep_timesteps += 1
|
|
# Select action randomly or according to policy
|
|
if t < cfg.start_timestep:
|
|
action = env.action_space.sample()
|
|
else:
|
|
action = (
|
|
agent.choose_action(np.array(state))
|
|
+ np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
|
|
).clip(-max_action, max_action)
|
|
# Perform action
|
|
next_state, reward, done, _ = env.step(action)
|
|
done_bool = float(done) if ep_timesteps < env._max_episode_steps else 0
|
|
# Store data in replay buffer
|
|
agent.memory.push(state, action, next_state, reward, done_bool)
|
|
state = next_state
|
|
ep_reward += reward
|
|
# Train agent after collecting sufficient data
|
|
if t >= cfg.start_timestep:
|
|
agent.update()
|
|
if done:
|
|
# +1 to account for 0 indexing. +0 on ep_timesteps since it will increment +1 even if done=True
|
|
print(f"Episode:{episode_num+1}, Episode T:{ep_timesteps}, Reward:{ep_reward:.3f}")
|
|
# Reset environment
|
|
state, done = env.reset(), False
|
|
rewards.append(ep_reward)
|
|
# 计算滑动窗口的reward
|
|
if ma_rewards:
|
|
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
|
else:
|
|
ma_rewards.append(ep_reward)
|
|
ep_reward = 0
|
|
ep_timesteps = 0
|
|
episode_num += 1
|
|
# Evaluate episode
|
|
if (t + 1) % cfg.eval_freq == 0:
|
|
evaluations.append(eval(cfg.env,agent, cfg.seed))
|
|
return rewards, ma_rewards
|
|
# def train(cfg,env,agent):
|
|
# evaluations = [eval(cfg.env,agent,cfg.seed)]
|
|
# ep_reward = 0
|
|
# tot_timestep = 0
|
|
# rewards = []
|
|
# ma_rewards = [] # moveing average reward
|
|
# for i_ep in range(int(cfg.train_eps)):
|
|
# state, done = env.reset(), False
|
|
# ep_reward = 0
|
|
# ep_timestep = 0
|
|
# while not done:
|
|
# ep_timestep += 1
|
|
# tot_timestep +=1
|
|
# # Select action randomly or according to policy
|
|
# if tot_timestep < cfg.start_timestep:
|
|
# action = env.action_space.sample()
|
|
# else:
|
|
# action = (
|
|
# agent.choose_action(np.array(state))
|
|
# + np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
|
|
# ).clip(-max_action, max_action)
|
|
# # action = (
|
|
# # agent.choose_action(np.array(state))
|
|
# # + np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
|
|
# # ).clip(-max_action, max_action)
|
|
# # Perform action
|
|
# next_state, reward, done, _ = env.step(action)
|
|
# done_bool = float(done) if ep_timestep < env._max_episode_steps else 0
|
|
|
|
# # Store data in replay buffer
|
|
# agent.memory.push(state, action, next_state, reward, done_bool)
|
|
# state = next_state
|
|
# ep_reward += reward
|
|
# # Train agent after collecting sufficient data
|
|
# if tot_timestep >= cfg.start_timestep:
|
|
# agent.update()
|
|
# print(f"Episode:{i_ep}/{cfg.train_eps}, Episode Timestep:{ep_timestep}, Reward:{ep_reward:.3f}")
|
|
# rewards.append(ep_reward)
|
|
# # 计算滑动窗口的reward
|
|
# if ma_rewards:
|
|
# ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
|
# else:
|
|
# ma_rewards.append(ep_reward)
|
|
# # Evaluate episode
|
|
# if (i_ep+1) % cfg.eval_freq == 0:
|
|
# evaluations.append(eval(cfg.env,agent, cfg.seed))
|
|
# return rewards,ma_rewards
|
|
|
|
|
|
if __name__ == "__main__":
|
|
cfg = TD3Config()
|
|
env = gym.make(cfg.env)
|
|
env.seed(cfg.seed) # Set seeds
|
|
torch.manual_seed(cfg.seed)
|
|
np.random.seed(cfg.seed)
|
|
state_dim = env.observation_space.shape[0]
|
|
action_dim = env.action_space.shape[0]
|
|
max_action = float(env.action_space.high[0])
|
|
agent = TD3(state_dim,action_dim,max_action,cfg)
|
|
rewards,ma_rewards = train(cfg,env,agent)
|
|
make_dir(cfg.result_path)
|
|
agent.save(path=cfg.result_path)
|
|
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
|
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
|
|
|
|